Structural connectivity of visuotopic intraparietal sulcus

The intraparietal sulcus (IPS) contains topographically organized regions, similar to retinotopic maps in visual cortex. These regions, referred to as IPS1-4, show similar functional responses to the mapping tasks used to define them, yet differing responses to tests of other posterior parietal cortex (PPC) functions such as short-term memory, eye movements and object viewing, suggesting that they may have distinct patterns of structural connectivity to other parts of the brain. The present study combined functional magnetic resonance imaging (fMRI) mapping with diffusion tensor imaging (DTI) to describe white matter connections of visuotopic regions along the IPS, in 25 neurotypical young-adult participants. We found that posterior IPS more likely connects to retinotopically defined visual regions, and superior temporal gyrus, relative to anterior IPS. Anterior IPS regions 3 and 4 had higher connection probabilities to prefrontal regions, relative to posterior IPS. All four IPS regions showed inter-hemispheric connections to analogous regions in the opposite hemisphere, as well as consistent connections to the thalamus and regions of the striatum. Multivariate pattern classification at the group level reliably distinguished IPS regions from one another on the basis of connectivity patterns, especially for the most distal pairs of regions; occipital and prefrontal regions provided the most discriminating information. These findings advance our understanding of the structure of visuotopic IPS, with implications for functional differences between regions, and possible homologies between humans and macaques. Visuospatial functions dependent on the parietal cortex are frequently impaired in individuals with developmental disorders and those afflicted by cerebrovascular disease; the findings described here can be used as a basis for comparing connectivity differences in these populations.

[1]  M. Sereno,et al.  Retinotopy and Attention in Human Occipital, Temporal, Parietal, and Frontal Cortex , 2008 .

[2]  Henry Kennedy,et al.  Pathways of Attention: Synaptic Relationships of Frontal Eye Field to V4, Lateral Intraparietal Cortex, and Area 46 in Macaque Monkey , 2011, The Journal of Neuroscience.

[3]  Alan C. Evans,et al.  Specific Involvement of Human Parietal Systems and the Amygdala in the Perception of Biological Motion , 1996, The Journal of Neuroscience.

[4]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[5]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[6]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[7]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity , 2011, The Journal of Neuroscience.

[8]  A. Schleicher,et al.  Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus , 2006, The Journal of comparative neurology.

[9]  D. Pandya,et al.  Striatal connections of the parietal association cortices in rhesus monkeys , 1993, The Journal of comparative neurology.

[10]  Mark D'Esposito,et al.  Top-down flow of visual spatial attention signals from parietal to occipital cortex. , 2009, Journal of vision.

[11]  Jieun Kim,et al.  Effects of Verbal Working Memory Load on Corticocortical Connectivity Modeled by Path Analysis of Functional Magnetic Resonance Imaging Data , 2002, NeuroImage.

[12]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  H. Moser,et al.  Imaging cortical association tracts in the human brain using diffusion‐tensor‐based axonal tracking , 2002, Magnetic resonance in medicine.

[14]  T. A. Kelley,et al.  Cortical mechanisms for shifting and holding visuospatial attention. , 2008, Cerebral cortex.

[15]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Goebel,et al.  The Dynamics of Interhemispheric Compensatory Processes in Mental Imagery , 2005, Science.

[17]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[18]  Sabine Kastner,et al.  Representation of Eye Movements and Stimulus Motion in Topographically Organized Areas of Human Posterior Parietal Cortex , 2008, The Journal of Neuroscience.

[19]  C. Mervis,et al.  Neural Basis of Genetically Determined Visuospatial Construction Deficit in Williams Syndrome , 2004, Neuron.

[20]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[21]  Armin Schnider,et al.  The attention network of the human brain: Relating structural damage associated with spatial neglect to functional imaging correlates of spatial attention , 2011, Neuropsychologia.

[22]  A. Schleicher,et al.  Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. , 2008, Cerebral cortex.

[23]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[24]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[25]  T. Klingberg Development of a superior frontal–intraparietal network for visuo-spatial working memory , 2006, Neuropsychologia.

[26]  B. Seltzer,et al.  Overlapping and nonoverlapping cortical projections to cortex of the superior temporal sulcus in the rhesus monkey: Double anterograde tracer studies , 1996 .

[27]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[28]  Jean-Francois Mangin,et al.  Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number , 2004, NeuroImage.

[29]  Jonathan D. Power,et al.  A Parcellation Scheme for Human Left Lateral Parietal Cortex , 2010, Neuron.

[30]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[31]  Hugues Duffau,et al.  Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human. , 2013, European journal of radiology.

[32]  K. Amunts,et al.  Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. , 2008, Cerebral cortex.

[33]  S. Dehaene,et al.  Topographical Layout of Hand, Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe , 2002, Neuron.

[34]  Aiden E. G. F. Arnold,et al.  Intraparietal sulcus activity and functional connectivity supporting spatial working memory manipulation. , 2015, Cerebral cortex.

[35]  S. Kastner,et al.  Two hierarchically organized neural systems for object information in human visual cortex , 2008, Nature Neuroscience.

[36]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[37]  D. Somers,et al.  Hemispheric Asymmetry in Visuotopic Posterior Parietal Cortex Emerges with Visual Short-Term Memory Load , 2010, The Journal of Neuroscience.

[38]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[39]  Nadim Joni Shah,et al.  Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques , 2011, NeuroImage.

[40]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[41]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[42]  Denise C Park,et al.  Parietal functional connectivity in numerical cognition. , 2013, Cerebral cortex.

[43]  Michael A Ferguson,et al.  Topographic maps of multisensory attention , 2010, Proceedings of the National Academy of Sciences.

[44]  M. Petrides,et al.  Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey , 2006, The Journal of comparative neurology.

[45]  D. Pandya,et al.  Posterior parietal projections to the intraparietal sulcus of the rhesus monkey , 2004, Experimental Brain Research.

[46]  Marlene Behrmann,et al.  Visuotopic Cortical Connectivity Underlying Attention Revealed with White-Matter Tractography , 2012, The Journal of Neuroscience.

[47]  D. Pandya,et al.  Corticothalamic connections of the posterior parietal cortex in the rhesus monkey , 1985, The Journal of comparative neurology.

[48]  Justin A. Harris,et al.  Mental-rotation deficits following damage to the right basal ganglia. , 2002, Neuropsychology.

[49]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[50]  H. Sakata,et al.  From Three-Dimensional Space Vision to Prehensile Hand Movements: The Lateral Intraparietal Area Links the Area V3A and the Anterior Intraparietal Area in Macaques , 2001, The Journal of Neuroscience.

[51]  S. Kastner,et al.  Shifting Attentional Priorities: Control of Spatial Attention through Hemispheric Competition , 2013, The Journal of Neuroscience.

[52]  Timothy Edward John Behrens,et al.  Connection patterns distinguish 3 regions of human parietal cortex. , 2006, Cerebral cortex.

[53]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[54]  M. Pinsk,et al.  Visuotopic Organization of Macaque Posterior Parietal Cortex: A Functional Magnetic Resonance Imaging Study , 2011, The Journal of Neuroscience.

[55]  Clayton E Curtis,et al.  Prioritized Maps of Space in Human Frontoparietal Cortex , 2012, The Journal of Neuroscience.

[56]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[57]  Michael A. Silver,et al.  Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex , 2010, NeuroImage.

[58]  A. Dagher,et al.  Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. , 2006, Cerebral cortex.

[59]  S. Kastner,et al.  Mechanisms of Spatial Attention Control in Frontal and Parietal Cortex , 2010, The Journal of Neuroscience.

[60]  D. Pandya,et al.  Converging visual and somatic sensory cortical input to the intraparietal sulcus of the rhesus monkey , 1980, Brain Research.

[61]  David Whitney,et al.  Attention gates visual coding in the human pulvinar , 2012, Nature Communications.

[62]  D. N. Pandya,et al.  Further observations on parieto-temporal connections in the rhesus monkey , 2004, Experimental Brain Research.

[63]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[64]  Iwona Stepniewska,et al.  Thalamocortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in New World monkeys. , 2010, Cerebral cortex.

[65]  A. Reiss,et al.  Reduced functional connectivity during working memory in Turner syndrome. , 2011, Cerebral cortex.

[66]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[67]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.

[68]  Yu Zhang,et al.  Tractography‐based parcellation of the human left inferior parietal lobule , 2012, NeuroImage.

[69]  Kaustubh Supekar,et al.  Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. , 2010, Cerebral cortex.

[70]  K. Amunts,et al.  The human inferior parietal lobule in stereotaxic space , 2008, Brain Structure and Function.

[71]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[72]  C. Genovese,et al.  Spatial Updating in Human Parietal Cortex , 2003, Neuron.