On Semicoercive Variational-Hemivariational Inequalities—Existence, Approximation, and Regularization

[1]  Joachim Gwinner,et al.  Semicoercive Variational Inequalities: From Existence to Numerical Solution of Nonmonotone Contact Problems , 2015, J. Optim. Theory Appl..

[2]  C. Varga,et al.  Weak solvability via bipotential method for contact models with nonmonotone boundary conditions , 2015 .

[3]  Joachim Gwinner,et al.  A Study of Regularization Techniques of Nondifferentiable Optimization in View of Application to Hemivariational Inequalities , 2014, J. Optim. Theory Appl..

[4]  Joachim Gwinner,et al.  hphp-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics , 2013, J. Comput. Appl. Math..

[5]  N. Huang,et al.  Existence theorems of the variational-hemivariational inequalities , 2013, J. Glob. Optim..

[6]  C. Varga,et al.  Systems of nonlinear hemivariational inequalities and applications , 2013 .

[7]  M. Sofonea,et al.  Mathematical Models in Contact Mechanics , 2012 .

[8]  Mircea Sofonea,et al.  Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems , 2012 .

[9]  A. Matei,et al.  Contact models leading to variational–hemivariational inequalities , 2012 .

[10]  Vicenţiu D. Rădulescu,et al.  Hartman–Stampacchia results for stably pseudomonotone operators and non-linear hemivariational inequalities , 2010 .

[11]  O. Chadli,et al.  Applications of Equilibrium Problems to a Class of Noncoercive Variational Inequalities , 2007 .

[12]  Jen-Chih Yao,et al.  Regularized Equilibrium Problems with Application to Noncoercive Hemivariational Inequalities , 2004 .

[13]  Zhen-Hai Liu,et al.  Elliptic variational hemivariational inequalities , 2003, Appl. Math. Lett..

[14]  Daniel Goeleven,et al.  Variational and Hemivariational Inequalities : Theory, Methods and Applications , 2003 .

[15]  J. Gwinner,et al.  On Semicoerciveness, a Class of Variational Inequalities, and an Application to von Kármán Plates , 2002 .

[16]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[17]  Samir Adly,et al.  STABILITY OF THE SOLUTION SET OF NON-COERCIVE VARIATIONAL INEQUALITIES , 2002 .

[18]  Zdzislaw Naniewicz,et al.  Semicoercive Variational-hemivariational Inequalities with Unilateral Growth Conditions , 2000, J. Glob. Optim..

[19]  Zaki Chbani,et al.  Recession methods for equilibrium problems and applications to variational and hemivariational inequalities , 1998 .

[20]  Z. Chbani,et al.  Some existence results for coercive and noncoercive hemivariational inequalities , 1998 .

[21]  J. Gwinner,et al.  A note on pseudomonotone functions, regularization, and relaxed coerciveness , 1997 .

[22]  D. Goeleven Noncoercive variational problems and related results , 1996 .

[23]  Samir Adly,et al.  Recession mappings and noncoercive variational inequalities , 1996 .

[24]  Daniel Goeleven,et al.  Semicoercive variational hemivariational inequalities , 1995, J. Glob. Optim..

[25]  P. D. Panagiotopoulos,et al.  Mathematical Theory of Hemivariational Inequalities and Applications , 1994 .

[26]  Panagiotis D. Panagiotopoulos,et al.  Hemivariational Inequalities: Applications in Mechanics and Engineering , 1993 .

[27]  F. Tomarelli Noncoercive variational inequalities for pseudomonotone operators , 1991 .

[28]  J. Gwinner,et al.  Discretization of semicoercive variational inequalities , 1991 .

[29]  P. D. Panagiotopoulos,et al.  Coercive and semicoercive hemivariational inequalities , 1991 .

[30]  J. Haslinger,et al.  Solution of Variational Inequalities in Mechanics , 1988 .

[31]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[32]  M. Růžička Nichtlineare Funktionalanalysis , 2020 .

[33]  N. Ovcharova Regularization Methods And Finite Element Approximation Of Hemivariational Inequalities With Applications To Nonmonotone Contact Problems , 2017 .

[34]  Anne Kuefer Quasidifferentiability And Nonsmooth Modelling In Mechanics Engineering And Economics , 2016 .

[35]  Jen-Chih Yao,et al.  Existence of Solutions for Noncoercive Hemivariational Inequalities by an Equilibrium Approach Under Pseudomonotone Perturbation , 2014, J. Optim. Theory Appl..

[36]  Anna Nagurney,et al.  Variational Inequalities , 2009, Encyclopedia of Optimization.

[37]  Ivan P. Gavrilyuk,et al.  Variational analysis in Sobolev and BV spaces , 2007, Math. Comput..

[38]  Samir Adly,et al.  Stability of linear semi-coercive variational inequalities in Hilbert spaces: application to the Signorini-Fichera problem , 2006 .

[39]  Jean-Paul Penot,et al.  Noncoercive problems and asymptotic conditions , 2006, Asymptot. Anal..

[40]  J. J. Telega,et al.  Models and analysis of quasistatic contact , 2004 .

[41]  P. Panagiotopoulos,et al.  An existence result on noncoercive hemivariational inequalities , 1997 .

[42]  V. F. Demʹi︠a︡nov,et al.  Constructive nonsmooth analysis , 1995 .

[43]  J. Gwinner A Discretization Theory for Monotone Semicoercive Problems and Finite Element Convergence for p-Harmonic Signorini Problems , 1994 .

[44]  Joachim Gwinner,et al.  Finite-element convergence for contact problems in plane linear elastostatics , 1992 .

[45]  P. Panagiotopoulos Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions , 1985 .

[46]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[47]  Joachim Gwinner,et al.  Nichtlineare Variationsungleichungen mit Anwendungen , 1978 .

[48]  M. Schatzman Problèmes aux limites non linéaires, non coercifs , 1973 .

[49]  G. Fichera Boundary Value Problems of Elasticity with Unilateral Constraints , 1973 .

[50]  Haim Brezis,et al.  Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .