Strong cooperative enhancement of two-photon absorption in double-strand conjugated porphyrin ladder arrays.

We present the two-photon absorption (2PA) spectra of a series of conjugated porphyrin oligomers containing N = 2, 4, 8, and ca. 13 monomer units, meso-meso connected with butadiyne linkers. We demonstrate that, in the coplanar double-strand arrays, self-assembled upon addition of 4,4'-bipyridyl, the conjugation length increases dramatically, leading to very strong cooperative enhancement of 2PA. We analyze the scaling of 2PA in both the double-strand and rotationally free single-strand arrays and show how the effective conjugation length in both cases is linked to the observed 2PA properties. By introducing a "conjugation signature" for the 2PA strength, we show that, in double-strand arrangement, the conjugation embraces the whole molecule up to the tetramer level, whereas in single-strand arrangement, it is always less than N, except for N = 2, but keeps increasing until N = 8. Our finding of extremely strong 2PA cross section, sigma2 approximately 105 GM, in double-strand oligomers peaking at 1.3 mum can find use for signal processing in fiber-optic devices.