Bypassing V1: a direct geniculate input to area MT

[1]  Lawrence C. Sincich,et al.  Independent Projection Streams from Macaque Striate Cortex to the Second Visual Area and Middle Temporal Area , 2003, The Journal of Neuroscience.

[2]  J. Kaas,et al.  Responses of Neurons in the Middle Temporal Visual Area After Long-Standing Lesions of the Primary Visual Cortex in Adult New World Monkeys , 2003, The Journal of Neuroscience.

[3]  Frank Tong,et al.  Cognitive neuroscience: Primary visual cortex and visual awareness , 2003, Nature Reviews Neuroscience.

[4]  C. Koch,et al.  A framework for consciousness , 2003, Nature Neuroscience.

[5]  H. Rodman,et al.  Calbindin immunoreactivity in the geniculo‐extrastriate system of the macaque: Implications for heterogeneity in the koniocellular pathway and recovery from cortical damage , 2001, The Journal of comparative neurology.

[6]  J. Kaas,et al.  Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys , 2000, Visual Neuroscience.

[7]  E. Seidemann,et al.  Color Signals in Area MT of the Macaque Monkey , 1999, Neuron.

[8]  H. Rodman,et al.  A transient geniculo-extrastriate pathway in macaques? Implications for 'blindsight'. , 1999, Neuroreport.

[9]  J. Kaas,et al.  Do superior colliculus projection zones in the inferior pulvinar project to MT in primates? , 1999, The European journal of neuroscience.

[10]  A. Cowey,et al.  Blindsight in man and monkey. , 1997, Brain : a journal of neurology.

[11]  Andrew M. Derrington,et al.  Rapid colour-specific detection of motion in human vision , 1996, Nature.

[12]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[13]  S. Zeki,et al.  The consequences of inactivating areas V1 and V5 on visual motion perception. , 1995, Brain : a journal of neurology.

[14]  A. Cowey,et al.  Blindsight in monkeys , 1995, Nature.

[15]  T. Yoshioka,et al.  A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. , 1994, Science.

[16]  S Zeki,et al.  Conscious visual perception without V1. , 1993, Brain : a journal of neurology.

[17]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[18]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[19]  W. Newsome,et al.  Microstimulation in visual area MT: effects on direction discrimination performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  P A Salin,et al.  Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. , 1992, Journal of neurophysiology.

[21]  J. K. Harting,et al.  Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: Organization of tectogeniculate pathways in nineteen species , 1991, The Journal of comparative neurology.

[22]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[25]  G. Orban,et al.  Response latencies of visual cells in macaque areas V1, V2 and V5 , 1989, Brain Research.

[26]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[27]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[29]  L. Benevento,et al.  An investigation of collateral projections of the dorsal lateral geniculate nucleus and other subcortical structures to cortical areas V1 and V4 in the macaque monkey: A double label retrograde tracer study , 1988, Experimental Brain Research.

[30]  Masao Yukie,et al.  Laminar origin of direct projection from cortex area V1 to V4 in the rhesus monkey , 1985, Brain Research.

[31]  J. Horton,et al.  Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[32]  L. Benevento,et al.  Demonstration of lack of dorsal lateral geniculate nucleus input to extrastriate areas MT and Visual 2 in the macaque monkey , 1982, Brain Research.

[33]  K. Yoshida,et al.  The afferent and efferent organization of the lateral geniculo‐prestriate pathways in the macaque monkey , 1981, The Journal of comparative neurology.

[34]  W. Fries The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  M. Yukie,et al.  Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys , 1981, The Journal of comparative neurology.

[36]  K. Yoshida,et al.  The projection from the dorsal lateral geniculate nucleus of the thalamus to extrastriate visual association cortex in the macaque monkey , 1981, Neuroscience Letters.

[37]  Leslie G. Ungerleider,et al.  The striate projection zone in the superior temporal sulcus of Macaca mulatta: Location and topographic organization , 1979, The Journal of comparative neurology.

[38]  J. Malpeli,et al.  The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta , 1975, The Journal of comparative neurology.

[39]  B. Cragg The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. , 1969, Vision research.

[40]  S. Zeki,et al.  The secondary visual areas of the monkey. , 1969, Brain research.

[41]  L. Weiskrantz,et al.  Vision in Monkeys after Removal of the Striate Cortex , 1967, Nature.

[42]  G. Riddoch DISSOCIATION OF VISUAL PERCEPTIONS DUE TO OCCIPITAL INJURIES, WITH ESPECIAL REFERENCE TO APPRECIATION OF MOVEMENT , 1917 .

[43]  K. Tanaka,et al.  Directionally selective response of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent color stimuli , 2004, Experimental Brain Research.

[44]  H. Kennedy,et al.  Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey , 2004, Experimental Brain Research.

[45]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[46]  S. Zeki,et al.  The Riddoch syndrome: insights into the neurobiology of conscious vision. , 1998, Brain : a journal of neurology.

[47]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[48]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[49]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[50]  A. Leventhal,et al.  Signal Timing across the Macaque Visual System Tories (reviewed by Nowak and Bullier 1998) or Directly In , 2022 .