Multi-component atmospheric aerosols prediction by a multi-functional MC-HDMR approach

Abstract In this paper, a multi-functional moving-cut high-dimensional model representation (MC-HDMR) approach is developed for simulation of multi-component input and output aerosols. This method leads to an aerosol prediction database system based on full thermodynamic models such as ISORROPIA. The developed prediction system can efficiently compute the prediction of aerosol thermodynamic equilibrium in high-dimensional domains with a large range of aerosol concentrations from 10 - 9  mol m - 3 to 10 - 5  mol m - 3 and for different types of aerosols including aerosols containing sea salt component. Numerical computations show the great computational efficiency of the method that its CPU-time cost is much less compared to ISORROPIA. Three types of aerosols of urban, non-urban continental and marine are considered and the multi-component outputs predicted by the approach are in great agreement with those by ISORROPIA and AIM2. Actual aerosol examples in European and Asian cities are simulated by the approach and ISORROPIA and AIM2. Numerical results match very well and show heavier traffic pollution at the areas of HU02, IT01 and NL09 among six European stations, more anthropogenic pollution in Shanghai than other three Asian cities, and Hong Kong's aerosols affected by the marine environment.

[1]  H. Rabitz,et al.  General foundations of high‐dimensional model representations , 1999 .

[2]  Jos Lelieveld,et al.  Gas/aerosol partitioning: 1. A computationally efficient model , 2002 .

[3]  Suhrid Balakrishnan,et al.  Fast equivalent operational model of tropospheric alkane photochemistry , 2005 .

[4]  Herschel Rabitz,et al.  Efficient Implementation of High Dimensional Model Representations , 2001 .

[5]  A. Wexler,et al.  Thermodynamic Model of the System H+−NH4+−Na+−SO42-−NO3-−Cl-−H2O at 298.15 K , 1998 .

[6]  A. Flossmann,et al.  The influence of aerosol particle number and hygroscopicity on the evolution of convective cloud systems and their precipitation , 2009 .

[7]  B. Shipway,et al.  Analytical estimation of cloud droplet nucleation based on an underlying aerosol population , 2010 .

[8]  J. W. Fitzgerald,et al.  Marine aerosols: A review , 1991 .

[9]  Alison S. Tomlin,et al.  Global sensitivity analysis of a 3D street canyon model—Part II: Application and physical insight using sensitivity analysis , 2008 .

[10]  A. Ebel,et al.  Temperature Dependent Thermodynamic Model of the System H+-NH4+-Na+-SO42--NO3--Cl--H2O , 2010 .

[11]  S. Pandis,et al.  An Analysis of Four Models Predicting the Partitioning of Semivolatile Inorganic Aerosol Components , 1999 .

[12]  Dong Liang,et al.  A new splitting wavelet method for solving the general aerosol dynamics equation , 2008 .

[13]  A. Meher Prasad,et al.  Probabilistic characterization of AHWR Inner Containment using High Dimensional Model Representation , 2009 .

[14]  Byung-Wook Kang,et al.  Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea , 2004 .

[15]  Panos G Georgopoulos,et al.  Correlation method for variance reduction of Monte Carlo integration in RS‐HDMR , 2003, J. Comput. Chem..

[16]  Hugh Coe,et al.  A curved multi-component aerosol hygroscopicity model framework: Part 1 Inorganic compounds , 2005 .

[17]  H. Rabitz,et al.  Efficient input-output model representations , 1999 .

[18]  Leonard K. Peters,et al.  A computationally efficient Multicomponent Equilibrium Solver for Aerosols (MESA) , 2005 .

[19]  P. Brimblecombe,et al.  Thermodynamic Model of the System H + − NH 4 + − Na + − SO 42-− NO 3-− Cl-− H 2 O at 298 . 15 K , 2009 .

[20]  U. Pöschl Gas-particle interactions of tropospheric aerosols: Kinetic and thermodynamic perspectives of multiphase chemical reactions, amorphous organic substances, and the activation of cloud condensation nuclei , 2011 .

[21]  J. Seinfeld,et al.  Atmospheric Gas-Aerosol Equilibrium I. Thermodynamic Model , 1993 .

[22]  A. Nenes,et al.  ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols , 1998 .

[23]  Volker Matthias,et al.  The aerosol distribution in Europe derived with the Community Multiscale Air Quality (CMAQ) model: comparison to near surface in situ and sunphotometer measurements , 2008 .

[24]  Tao Wang,et al.  Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996 , 2000 .

[25]  J. Heintzenberg Fine particles in the global troposphere. A review , 1989 .

[26]  Chien-Lung Chen,et al.  Speciation and temporal characterization of dicarboxylic acids in PM2.5 during a PM episode and a period of non-episodic pollution , 2008 .

[27]  Xingying Zhang,et al.  The ion chemistry;seasonal cycle;and sources of PM2.5 and TSP aerosol in Shanghai , 2006 .

[28]  Yan Yin,et al.  The effect of aerosol layers on convective cloud microphysics and precipitation , 2011 .

[29]  G. Tedeschi,et al.  Spatial variation of the aerosol concentration and deposition over the Mediterranean coastal zone , 2010 .

[30]  G. Kallos,et al.  Air pollution modeling in the Mediterranean Region: Analysis and forecasting of episodes , 2008 .

[31]  M. Jacobson Studying the effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUISOLV II , 1999 .

[32]  F. Binkowski,et al.  Models-3 community multiscale air quality (cmaq) model aerosol component , 2003 .

[33]  A. Nenes,et al.  ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K + –Ca 2+ –Mg 2+ –NH 4 + –Na + –SO 4 2− –NO 3 − –Cl − –H 2 O aerosols , 2007 .

[34]  Georg A. Grell,et al.  Fully coupled “online” chemistry within the WRF model , 2005 .

[35]  Rajib Chowdhury,et al.  Hybrid High Dimensional Model Representation for reliability analysis , 2009 .

[36]  J. Seinfeld,et al.  A new inorganic atmospheric aerosol phase equilibrium model (UHAERO) , 2006 .

[37]  J. Seinfeld,et al.  A comparative study of equilibrium approaches to the chemical characterization of secondary aerosols , 1986 .

[38]  J. Seinfeld,et al.  Dynamics of Tropospheric Aerosols , 1995 .

[39]  A. Russell,et al.  ANISORROPIA: the adjoint of the aerosol thermodynamic model ISORROPIA , 2011 .

[40]  A. Nenes,et al.  Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models , 1999 .

[41]  Herschel Rabitz,et al.  Multicut‐HDMR with an application to an ionospheric model , 2004, J. Comput. Chem..

[42]  Herschel Rabitz,et al.  High‐dimensional model representations generated from low order terms—lp‐RS‐HDMR , 2003, J. Comput. Chem..

[43]  J. Seinfeld,et al.  Atmospheric equilibrium model of sulfate and nitrate aerosols , 1983 .

[44]  Dong Liang,et al.  An efficient approach of aerosol thermodynamic equilibrium predictions by the HDMR method , 2010 .

[45]  J. Seinfeld,et al.  Second-generation inorganic aerosol model , 1991 .

[46]  Q. Yuan,et al.  A NEW MULTIPLE SUB-DOMAIN RS-HDMR METHOD AND ITS APPLICATION TO TROPOSPHERIC ALKANE PHOTOCHEMISTRY MODEL , 2011 .

[47]  J. Seinfeld,et al.  Continued development of a general equilibrium model for inorganic multicomponent atmospheric aerosols , 1987 .

[48]  Bonyoung Koo,et al.  Development and application of a three-dimensional aerosol chemical transport model, PMCAMx , 2007 .

[49]  J. Quan,et al.  Assessing the role of ammonia in sulfur transformation and deposition in China , 2008 .