A pre-injection assessment of CO2 and H2S mineralization reactions at the Nesjavellir (Iceland) geothermal storage site

[1]  S. Gíslason,et al.  Mineralization potential of water-dissolved CO2 and H2S injected into basalts as function of temperature: Freshwater versus Seawater , 2021, International Journal of Greenhouse Gas Control.

[2]  S. Gíslason,et al.  An experimental study of basalt–seawater−CO2 interaction at 130 °C , 2021 .

[3]  L. Marynowski,et al.  1,5-Naphthalene disulfonate stability and breakdown kinetics in aqueous solutions under geothermal conditions , 2021 .

[4]  Ó. Flóvenz,et al.  Cation-Exchange Capacity Distribution within Hydrothermal Systems and Its Relation to the Alteration Mineralogy and Electrical Resistivity , 2020, Energies.

[5]  B. McGrail,et al.  Quantification of CO2 Mineralization at the Wallula Basalt Pilot Project. , 2020, Environmental science & technology.

[6]  Sandra Ó. Snæbjörnsdóttir,et al.  CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 °C , 2020, Geochimica et Cosmochimica Acta.

[7]  Sandra Ó. Snæbjörnsdóttir,et al.  Carbon dioxide storage through mineral carbonation , 2020, Nature Reviews Earth & Environment.

[8]  S. Gíslason,et al.  Experimental observations of CO2-water-basaltic glass interaction in a large column reactor experiment at 50 °C , 2019, International Journal of Greenhouse Gas Control.

[9]  Magnús Þór Arnarson,et al.  The rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site , 2018, International Journal of Greenhouse Gas Control.

[10]  S. Gíslason,et al.  Evaluation and refinement of thermodynamic databases for mineral carbonation , 2018, Energy Procedia.

[11]  A. Stefánsson Gas chemistry of Icelandic thermal fluids , 2017 .

[12]  Anne H. Menefee,et al.  Effect of transport limitations and fluid properties on reaction products in fractures of unaltered and serpentinized basalt exposed to high PCO2 fluids , 2017 .

[13]  E. C. Sullivan,et al.  Wallula Basalt Pilot Demonstration Project: Post-injection Results and Conclusions , 2017 .

[14]  J. Rimstidt,et al.  Rate equations for modeling carbon dioxide sequestration in basalt , 2017 .

[15]  S. Arnórsson,et al.  Isotope systematics of Icelandic thermal fluids , 2017 .

[16]  A. Stefánsson,et al.  Sulfur isotopes in Icelandic thermal fluids , 2017 .

[17]  A. T. Owen,et al.  Field Validation of Supercritical CO2 Reactivity with Basalts , 2017 .

[18]  A. Williams-Jones,et al.  Lithogeochemical approaches in geothermal system characterization: An application to the Reykjanes geothermal field, Iceland , 2016 .

[19]  I. Schroder,et al.  The role of soil flux and soil gas monitoring in the characterisation of a CO2 surface leak: a case study in Qinghai, China. , 2016 .

[20]  S. Arnórsson,et al.  Mantle CO 2 degassing through the Icelandic crust: Evidence from carbon isotopes in groundwater , 2016 .

[21]  Xianghui Xiao,et al.  Experimental evidence of reaction‐induced fracturing during olivine carbonation , 2016 .

[22]  Wallace S. Broecker,et al.  Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions , 2016, Science.

[23]  H. Ármannsson The fluid geochemistry of Icelandic high temperature geothermal areas , 2016 .

[24]  N. Pérez,et al.  Application of diffuse gas flux measurements and soil gas analysis to geothermal exploration and environmental monitoring: Example from the Reykjanes geothermal field, SW Iceland , 2016 .

[25]  W. Evans,et al.  Origins of geothermal gases at Yellowstone , 2015 .

[26]  K. Grönvold,et al.  Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes , 2014 .

[27]  S. Gíslason,et al.  The chemistry and element fluxes of the July 2011 Múlakvísl and Kaldakvísl glacial floods, Iceland , 2014 .

[28]  S. Gíslason,et al.  An experimental study of basaltic glass–H2O–CO2 interaction at 22 and 50 °C: Implications for subsurface storage of CO2 , 2014 .

[29]  P. Kelemen,et al.  Reaction-Driven Cracking During Mineral Hydration, Carbonation and Oxidation , 2013 .

[30]  S. Gíslason,et al.  A novel high pressure column flow reactor for experimental studies of CO2 mineral storage , 2013 .

[31]  S. Gíslason,et al.  Do carbonate precipitates affect dissolution kinetics? 2: Diopside , 2013 .

[32]  A. Stefánsson,et al.  The chemistry of trace elements in surface geothermal waters and steam, Iceland , 2012 .

[33]  E. Shock,et al.  Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman , 2012 .

[34]  G. Ívarsson,et al.  Diffuse volcanic degassing and thermal energy release from Hengill volcanic system, Iceland , 2012, Bulletin of Volcanology.

[35]  R. Rosenbauer,et al.  Carbon sequestration via reaction with basaltic rocks: Geochemical modeling and experimental results , 2012 .

[36]  A. Gysi,et al.  CO2-water–basalt interaction. Low temperature experiments and implications for CO2 sequestration into basalts , 2012 .

[37]  S. Gíslason,et al.  An experimental study of crystalline basalt dissolution from 2 ⩽ pH ⩽ 11 and temperatures from 5 to 75 °C , 2011 .

[38]  A. Gysi,et al.  CO2–water–basalt interaction. Numerical simulation of low temperature CO2 sequestration into basalts , 2011 .

[39]  S. Arnórsson,et al.  The geochemistry and sequestration of H2S into the geothermal system at Hellisheidi, Iceland , 2011 .

[40]  S. Gíslason,et al.  Do carbonate precipitates affect dissolution kinetics? 1: Basaltic glass , 2011 .

[41]  Wallace S. Broecker,et al.  Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project , 2010 .

[42]  Herbert T. Schaef,et al.  Carbonate mineralization of volcanic province basalts , 2010 .

[43]  Eric H. Oelkers,et al.  Chemical evolution of the Mt. Hekla, Iceland, groundwaters: A natural analogue for CO2 sequestration in basaltic rocks , 2009 .

[44]  Franz May,et al.  New and established techniques for surface gas monitoring at onshore CO2 storage sites , 2009 .

[45]  Sigurdur R. Gislason,et al.  Mineral Carbonation of CO2 , 2008 .

[46]  H. Franzson,et al.  Chemical transport in geothermal systems in Iceland Evidence from hydrothermal alteration , 2008 .

[47]  S. Arnórsson,et al.  Fluid-Fluid Interactions in Geothermal Systems , 2007 .

[48]  W. Broecker,et al.  CO2 Arithmetic , 2007, Science.

[49]  A. Stefánsson,et al.  New methods for the direct determination of dissolved inorganic, organic and total carbon in natural waters by Reagent-Free Ion Chromatography and inductively coupled plasma atomic emission spectrometry. , 2007, Analytica chimica acta.

[50]  S. Arnórsson,et al.  Sampling and analysis of geothermal fluids , 2006 .

[51]  S. Gíslason,et al.  The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C , 2004 .

[52]  S. Gíslason,et al.  Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature , 2003 .

[53]  E. Gunnlaugsson,et al.  Hydrothermal alteration of plagioclase and growth of secondary feldspar in the Hengill Volcanic Centre, SW Iceland , 2002 .

[54]  Ingvi Gunnarsson,et al.  Amorphous silica solubility and the thermodynamic properties of H4SiO°4 in the range of 0° to 350°C at Psat , 2000 .

[55]  S. Arnórsson,et al.  POROSITY EVOLUTION AND MINERAL PARAGENESIS DURING LOW-GRADE METAMORPHISM OF BASALTIC LAVAS AT TEIGARHORN, EASTERN ICELAND , 1999 .

[56]  G. Chiodini,et al.  Hydrothermal gas equilibria: the H2O-H2-CO2-CO-CH4 system , 1998 .

[57]  S. Simmons,et al.  Origins of calcite in a boiling geothermal system , 1994 .

[58]  W. Giggenbach Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin , 1992 .

[59]  G. Fridleifsson,et al.  The smectite–chlorite transition in drillhole NJ‐15, Nesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigations , 1991 .

[60]  N. M. Rose Dissolution rates of prehnite, epidote, and albite , 1991 .

[61]  E. Gunnlaugsson,et al.  Gas geochemistry of geothermal fluids, the Hengill area, southwest rift zone of Iceland , 1991 .

[62]  S. Arnórsson,et al.  The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions , 1983 .

[63]  H. Kristmannsdóttir Wollastonite from hydrothermally altered basaltic rocks in Iceland , 1981, Mineralogical Magazine.

[64]  W. Giggenbach Geothermal gas equilibria , 1980 .

[65]  J. Tómasson,et al.  High temperature alteration minerals and thermal brines, Reykjanes, Iceland , 1972 .

[66]  S. Durucan,et al.  SUCCEED: A CO2 storage and utilisation project aimed at mitigating against greenhouse gas emissions from geothermal power production , 2021 .

[67]  Sandra Ó. Snæbjörnsdóttir,et al.  Injection of Geothermal CO2 and H2S Gases at the Nesjavellir Site, SW Iceland: A Pre-Injection Overview , 2020 .

[68]  Sandra Ó. Snæbjörnsdóttir,et al.  Modelling the Complex Structural Features Controlling Fluid Flow at the CarbFix 2 Reinjection Site , Hellisheiði Geothermal Power Plant , SW-Iceland , 2019 .

[69]  J. Přikryl,et al.  H2S sequestration process and sustainability in geothermal systems , 2018 .

[70]  Sandra Ó. Snæbjörnsdóttir,et al.  Reaction path modelling of in-situ mineralisation of CO2 at the CarbFix site at Hellisheidi, SW-Iceland , 2018 .

[71]  Joeri Rogelj,et al.  Equitable mitigation to achieve the Paris Agreement goals , 2017 .

[72]  S. Arnórsson,et al.  Gas chemistry, boiling and phase segregation in a geothermal system, Hellisheidi, Iceland , 2014 .

[73]  S. Gíslason,et al.  The geology and water chemistry of the Hellisheidi, SW-Iceland carbon storage site , 2013 .

[74]  David L. Parkhurst,et al.  Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 2013 .

[75]  B. Mountain,et al.  The Thermal Stability of the Naphthalene Sulfonic and Naphthalene Disulfonic Acids under Geothermal Conditions: Experimental Results and a Field-Based Example , 2012 .

[76]  Eric H. Oelkers,et al.  Thermodynamic Databases for Water-Rock Interaction , 2009 .

[77]  B. Jamtveit,et al.  Reaction induced fracturing during replacement processes , 2009 .

[78]  H. Franzson HYDROTHERMAL EVOLUTION OF THE NESJAVELLIR HIGH-TEMPERATURE SYSTEM , ICELAND , 2000 .

[79]  H. Kristmannsdóttir Alteration of Basaltic Rocks by Hydrothermal-Activity at 100-300°C , 1979 .