Low-loss reciprocal optical terminals for two-way time-frequency transfer.

We present the design and performance of a low-cost, reciprocal, compact free-space terminal employing tip/tilt pointing compensation that enables optical two-way time-frequency transfer over free-space links across the turbulent atmosphere. The insertion loss of the terminals is ∼1.5  dB with total link losses of 15 dB, 24 dB, and 50 dB across horizontal, turbulent 2-km, 4-km, and 12-km links, respectively. The effects of turbulence on pointing control and aperture size, and their influence on the terminal design, are discussed.

[1]  Etienne Samain,et al.  A coherent free space optical link for long distance clock comparison, navigation, and communication: The Mini-Doll project , 2017, International Conference on Space Optics.

[2]  Fritz Riehle,et al.  Optical clock networks , 2017, Nature Photonics.

[3]  L. Andrews,et al.  Laser Beam Propagation Through Random Media , 1998 .

[4]  D. Wineland,et al.  Optical Clocks and Relativity , 2010, Science.

[5]  R. Fante Electromagnetic beam propagation in turbulent media , 1975, Proceedings of the IEEE.

[6]  A. Jarrett Atmospheric Optics , 1966, Nature.

[7]  D. L. Fried,et al.  Optical heterodyne detection of an atmospherically distorted signal wave front , 1967 .

[8]  D. Rugar,et al.  Optical clocks and relativity , 2013 .

[9]  Junho Shin,et al.  Few-femtosecond-resolution characterization and suppression of excess timing jitter and drift in indoor atmospheric frequency comb transfer. , 2014, Optics express.

[10]  David Hughes,et al.  Optical communications in atmospheric turbulence , 2009, Optical Engineering + Applications.

[11]  Yoshinori Arimoto Compact free-space optical terminal for multi-gigabit signal transmissions with a single-mode fiber , 2009, LASE.

[12]  Yamac Dikmelik,et al.  Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence. , 2005 .

[13]  S. Capozziello,et al.  Quantum tests of the Einstein Equivalence Principle with the STE–QUEST space mission , 2014, 1404.4307.

[14]  Zoran Sodnik,et al.  Adaptive optics and ESA's optical ground station , 2009, Optical Engineering + Applications.

[15]  C Clivati,et al.  Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network. , 2013, Optics letters.

[16]  Hugo Bergeron,et al.  Enhanced link availability for free space optical time-frequency transfer using adaptive optic terminals , 2016, SPIE Defense + Security.

[17]  J. Shapiro Reciprocity of the Turbulent Atmosphere , 1971 .

[18]  N Quintin,et al.  Test of Special Relativity Using a Fiber Network of Optical Clocks. , 2017, Physical review letters.

[19]  C. Guerlin,et al.  Some fundamental physics experiments using atomic clocks and sensors , 2015 .

[20]  William C Swann,et al.  Open-path dual comb spectroscopy to an airborne retroreflector. , 2017, Optica.

[21]  Fabio Stefani,et al.  Two-way optical frequency comparisons at 5*10^-21 relative stability over 100-km telecommunication network fibers , 2014 .

[22]  Franz X Kärtner,et al.  Attosecond precision multi-kilometer laser-microwave network , 2016, Light: Science & Applications.

[23]  E. F. Arias,et al.  Comparing a GPS time link calibration with an optical fibre self-calibration with 200 ps accuracy , 2015 .

[24]  Norman Fitz-Coy,et al.  Optical time transfer for future disaggregated small satellite navigation systems , 2014 .

[25]  Hugo Bergeron,et al.  Synchronization of Distant Optical Clocks at the Femtosecond Level , 2015, 1509.07888.

[26]  M. Pospelov,et al.  Hunting for topological dark matter with atomic clocks , 2013, Nature Physics.

[27]  Esther Baumann,et al.  Optical two-way time and frequency transfer over free space , 2013 .

[28]  Yoshihisa Takayama,et al.  Experimental verification of fiber-coupling efficiency for satellite-to-ground atmospheric laser downlinks. , 2012, Optics express.

[29]  W. Leeb,et al.  Fiber coupling efficiency for random light and its applications to lidar. , 1998, Optics letters.

[30]  Hiroshi Munekane,et al.  Geopotential measurements with synchronously linked optical lattice clocks , 2016 .

[31]  Larry B. Stotts,et al.  Analysis of link performance for the FOENEX laser communications system , 2012, Defense + Commercial Sensing.

[32]  Hugo Bergeron,et al.  Synchronization of Clocks Through 12 km of Strongly Turbulent Air Over a City. , 2016, Applied physics letters.

[33]  Abhijit Biswas,et al.  Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink. , 2015, Optics express.

[34]  I. Coddington,et al.  Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path. , 2016, Optica.

[35]  Thomas Udem,et al.  Optical frequency transfer over a single-span 1840 km fiber link , 2013, CLEO: 2013.

[36]  N Quintin,et al.  A clock network for geodesy and fundamental science , 2016, Nature communications.

[37]  F. Roddier V The Effects of Atmospheric Turbulence in Optical Astronomy , 1981 .