Boolean Functions and Their Applications in Cryptography

This book focuses on the different representations and cryptographic properties of Booleans functions, presents constructions of Boolean functions with some good cryptographic properties. More specifically, Walsh spectrum description of the traditional cryptographic properties of Boolean functions, including linear structure, propagation criterion, nonlinearity, and correlation immunity are presented. Constructions of symmetric Boolean functions and of Boolean permutations with good cryptographic properties are specifically studied. This book is not meant to be comprehensive, but with its own focus on some original research of the authors in the past. To be self content, some basic concepts and properties are introduced. This book can serve as a reference for cryptographic algorithm designers, particularly the designers of stream ciphers and of block ciphers, and for academics with interest in the cryptographic properties of Boolean functions.

[1]  Kaisa Nyberg,et al.  Differentially Uniform Mappings for Cryptography , 1994, EUROCRYPT.

[2]  Josef Pieprzyk,et al.  Cryptanalysis of Block Ciphers with Overdefined Systems of Equations , 2002, ASIACRYPT.

[3]  Nicolas Courtois Fast Algebraic Attacks on Stream Ciphers with Linear Feedback , 2003, CRYPTO.

[4]  O. V. DENISOV An asymptotic formula for the number of correlation-immune of order k Boolean functions , 1992 .

[5]  Jovan Dj. Golic,et al.  Correlation properties of a general binary combiner with memory , 1996, Journal of Cryptology.

[6]  Dean G. Hoffman,et al.  A Note on a Conjecture Concerning Symmetric Resilient Functions , 1993, Inf. Process. Lett..

[7]  Mitsuru Matsui,et al.  On Correlation Between the Order of S-boxes and the Strength of DES , 1994, EUROCRYPT.

[8]  Yang Yi Xian Correlation-immunity of Boolean functions , 1987 .

[9]  Willi Meier,et al.  Nonlinearity Criteria for Cryptographic Functions , 1990, EUROCRYPT.

[10]  Xian-Mo Zhang,et al.  New Results on Correlation , 2000 .

[11]  D. Stinson,et al.  Resilient functions and large sets of orthogonal arrays , 2022 .

[12]  R. A. Rueppel Analysis and Design of Stream Ciphers , 2012 .

[13]  Yuliang Zheng,et al.  Cryptographically resilient functions , 1997, IEEE Trans. Inf. Theory.

[14]  Palash Sarkar,et al.  Spectral Domain Analysis of Correlation Immune and Resilient Boolean Functions , 2000, IACR Cryptol. ePrint Arch..

[15]  Douglas R. Stinson,et al.  Bounds for Resilient Functions and Orthogonal Arrays , 1994, CRYPTO.

[16]  Claude Carlet,et al.  Algebraic immunity for cryptographically significant Boolean functions: analysis and construction , 2006, IEEE Transactions on Information Theory.

[17]  Yuliang Zheng,et al.  Auto-Correlations and New Bounds on the Nonlinearity of Boolean Functions , 1996, EUROCRYPT.

[18]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[19]  Subhamoy Maitra,et al.  Further constructions of resilient Boolean functions with very high nonlinearity , 2002, IEEE Trans. Inf. Theory.

[20]  Sangjin Lee,et al.  On the Correlation Immune Functions and Their Nonlinearity , 1996, ASIACRYPT.

[21]  Wen-Feng Qi,et al.  Symmetric Boolean functions depending on an odd number of variables with maximum algebraic immunity , 2006, IEEE Trans. Inf. Theory.

[22]  Claude Carlet Generalized partial spreads , 1995, IEEE Trans. Inf. Theory.

[23]  Mihir Bellare,et al.  Verifiable partial key escrow , 1997, CCS '97.

[24]  William Millan Low Order Approximation of Cipher Functions , 1995, Cryptography: Policy and Algorithms.

[25]  Willi Meier,et al.  Fast correlation attacks on certain stream ciphers , 1989, Journal of Cryptology.

[26]  Dong Hoon Lee,et al.  Algebraic Attacks on Summation Generators , 2004, FSE.

[27]  M. Karpovsky Finite Orthogonal Series in Design of Digital Devices , 2006 .

[28]  Михаил Сергеевич Лобанов,et al.  Точное соотношение между нелинейностью и алгебраической иммунностью@@@Exact relation between nonlinearity and algebraic immunity , 2006 .

[29]  Jovan Dj. Golic,et al.  On the Security of Shift Register Based Keystream Generators , 1993, FSE.

[30]  Thomas Siegenthaler,et al.  Design of Combiners to Prevent Divide and Conquer Attacks , 1985, CRYPTO.

[31]  Luke O'Connor,et al.  Enumerating Nondegenerate Permutations , 1991, EUROCRYPT.

[32]  Thomas Siegenthaler,et al.  Correlation-immunity of nonlinear combining functions for cryptographic applications , 1984, IEEE Trans. Inf. Theory.

[33]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[34]  Ed Dawson,et al.  On construction of resilient functions , 1996, ACISP.

[35]  Ed Dawson,et al.  Correlation immunity and resiliency of symmetric Boolean functions , 2004, Theor. Comput. Sci..

[36]  Vladimir V. Chepyzhov,et al.  A Simple Algorithm for Fast Correlation Attacks on Stream Ciphers , 2000, FSE.

[37]  Claude Carlet,et al.  Two New Classes of Bent Functions , 1994, EUROCRYPT.

[38]  Andrei V. Kelarev Boolean functions in coding theory and cryptology , 2005 .

[39]  Palash Sarkar,et al.  Maximum nonlinearity of symmetric Boolean functions on odd number of variables , 2002, IEEE Trans. Inf. Theory.

[40]  Ying Zhao,et al.  On bent functions with some symmetric properties , 2006, Discret. Appl. Math..

[41]  Joan Daemen,et al.  AES Proposal : Rijndael , 1998 .

[42]  P. Sarkar,et al.  Improved construction of nonlinear resilient S-boxes , 2002, IEEE Transactions on Information Theory.

[43]  Larry J. Stockmeyer On the combinational complexity of certain symmetric Boolean functions , 2005, Mathematical systems theory.

[44]  Claude Carlet Partially-bent functions , 1993, Des. Codes Cryptogr..

[45]  Frederik Armknecht,et al.  Constructing Single- and Multi-output Boolean Functions with Maximal Algebraic Immunity , 2006, ICALP.

[46]  武传坤,et al.  Efficient Construction of Permutations of High Nonlinearity , 1993 .

[47]  Kaisa Nyberg,et al.  On the Construction of Highly Nonlinear Permutations , 1992, EUROCRYPT.

[48]  Sangjin Lee,et al.  Conditional Correlation Attack on Nonlinear Filter Generators , 1996, ASIACRYPT.

[49]  Xuejia Lai,et al.  Additive and Linear Structures of Cryptographic Functions , 1994, FSE.

[50]  Douglas R. Stinson,et al.  An infinite class of counterexamples to a conjecture concerning nonlinear resilient functions , 2004, Journal of Cryptology.

[51]  Claude Carlet,et al.  More Correlation-Immune and Resilient Functions over Galois Fields and Galois Rings , 1997, EUROCRYPT.

[52]  Zheng Haoran Construction and enumeration of Boolean permutations , 2011 .

[53]  Yuliang Zheng,et al.  Improved Upper Bound on the Nonlinearity of High Order Correlation Immune Functions , 2000, Selected Areas in Cryptography.

[54]  Cunsheng Ding,et al.  The Stability Theory of Stream Ciphers , 1991, Lecture Notes in Computer Science.

[55]  James L. Massey,et al.  A spectral characterization of correlation-immune combining functions , 1988, IEEE Trans. Inf. Theory.

[56]  Subhamoy Maitra On Nonlinearity and Autocorrelation Properties of Correlation Immune Boolean Functions , 2004, J. Inf. Sci. Eng..

[57]  øöö Blockinø Vectorial Boolean Functions and Induced Algebraic Equations , 2004 .

[58]  Douglas R. Stinson,et al.  Three characterizations of non-binary correlation-immune and resilient functions , 1995, Des. Codes Cryptogr..

[59]  Kaisa Nyberg,et al.  Perfect Nonlinear S-Boxes , 1991, EUROCRYPT.

[60]  Ross J. Anderson Searching for the Optimum Correlation Attack , 1994, FSE.

[61]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[62]  Carlisle M. Adams,et al.  The structured design of cryptographically good s-boxes , 1990, Journal of Cryptology.

[63]  Joel Friedman,et al.  On the bit extraction problem , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[64]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[65]  Frederik Armknecht,et al.  Efficient Computation of Algebraic Immunity for Algebraic and Fast Algebraic Attacks , 2006, EUROCRYPT.

[66]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[67]  Zhang Wen-ying On the Annihilators of Cryptographic Boolean Functions , 2006 .

[68]  Chuankun Wu,et al.  Construction and enumeration of Boolean functions with maximum algebraic immunity , 2009, Science in China Series F: Information Sciences.

[69]  Anne Canteaut,et al.  Construction of t-Resilient Functions over a Finite Alphabet , 1996, EUROCRYPT.

[70]  Frederik Armknecht,et al.  Algebraic Attacks on Combiners with Memory , 2003, CRYPTO.

[71]  Vijay Varadharajan,et al.  Public key cryptosystems based on boolean permutations and their applications , 2000, Int. J. Comput. Math..

[72]  Bart Preneel,et al.  On the Algebraic Immunity of Symmetric Boolean Functions , 2005, INDOCRYPT.

[73]  Robert J. McEliece,et al.  A public key cryptosystem based on algebraic coding theory , 1978 .

[74]  Serge Mister,et al.  Practical S-Box Design , 1996 .

[75]  Kaisa Nyberg,et al.  Linear Approximation of Block Ciphers , 1994, EUROCRYPT.

[76]  Claude Carlet,et al.  On Correlation-Immune Functions , 1991, CRYPTO.

[77]  Claude Carlet,et al.  An Infinite Class of Balanced Functions with Optimal Algebraic Immunity, Good Immunity to Fast Algebraic Attacks and Good Nonlinearity , 2008, ASIACRYPT.

[78]  Willi Meier,et al.  Correlation properties of combiners with memory in stream ciphers , 1991, Journal of Cryptology.

[79]  Florent Chabaud,et al.  On the Security of Some Cryptosystems Based on Error-correcting Codes , 1994, EUROCRYPT.

[80]  Yuliang Zheng,et al.  On Relationships among Avalanche, Nonlinearity, and Correlation Immunity , 2000, ASIACRYPT.

[81]  Subhamoy Maitra,et al.  Results on Algebraic Immunity for Cryptographically Significant Boolean Functions , 2004, INDOCRYPT.

[82]  Yuliang Zheng,et al.  On Nonlinear Resilient Functions (Extended Abstract) , 1995, EUROCRYPT.

[83]  Thomas Siegenthaler,et al.  Decrypting a Class of Stream Ciphers Using Ciphertext Only , 1985, IEEE Transactions on Computers.

[84]  R. Forre,et al.  Methods and instruments for designing S-boxes , 1990, Journal of Cryptology.

[85]  Jovan Dj. Golic,et al.  Edit Distance Correlation Attack on the Alternating Step Generator , 1997, CRYPTO.

[86]  Jennifer Seberry,et al.  On Constructions and Nonlinearity of Correlation Immune Functions (Extended Abstract) , 1994, EUROCRYPT.

[87]  Thomas Siegenthaler,et al.  Cryptanalysts Representation of Nonlinearly Filtered ML-Sequences , 1985, EUROCRYPT.

[88]  Rainer A. Rueppel,et al.  Correlation Immunity and the Summation Generator , 1985, CRYPTO.

[89]  Josef Pieprzyk,et al.  How to Construct Pseudorandom Permutations from Single Pseudorandom Functions , 1991, EUROCRYPT.

[90]  Willi Meier,et al.  Fast Algebraic Attacks on Stream Ciphers with Linear Feedback , 2003, CRYPTO.

[91]  Josef Pieprzyk,et al.  Towards effective nonlinear cryptosystem design , 1988 .

[92]  Yvo Desmedt,et al.  Threshold Cryptosystems , 1989, CRYPTO.

[93]  Claude Carlet,et al.  Algebraic Attacks and Decomposition of Boolean Functions , 2004, EUROCRYPT.

[94]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[95]  Xian-Mo Zhang,et al.  Permutation Generators of Alternating Groups , 1990, AUSCRYPT.

[96]  Frederik Armknecht,et al.  Improving Fast Algebraic Attacks , 2004, FSE.

[97]  Stafford E. Tavares,et al.  On the Design of S-Boxes , 1985, CRYPTO.

[98]  Jennifer Seberry,et al.  On the Symmetric Property of Homogeneous Boolean Functions , 1999, ACISP.

[99]  Yupu Hu,et al.  Constructions of 1-resilient Boolean functions on odd number of variables with a high nonlinearity , 2012, Secur. Commun. Networks.

[100]  Rudolf Lidl,et al.  Permutation Polynomials in RSA-Cryptosystems , 1983, CRYPTO.

[101]  Palash Sarkar,et al.  Hamming Weights of Correlation Immune Boolean Functions , 1999, Inf. Process. Lett..

[102]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[103]  Subhamoy Maitra,et al.  Cryptographically Significant Boolean Functions: Construction and Analysis in Terms of Algebraic Immunity , 2005, FSE.