Laboratory Studies for Planetary Sciences. A Planetary Decadal Survey White Paper Prepared by the American Astronomical Society (AAS) Working Group on Laboratory Astrophysics (WGLA)

The WGLA of the AAS (this http URL) promotes collaboration and exchange of knowledge between astronomy and planetary sciences and the laboratory sciences (physics, chemistry, and biology). Laboratory data needs of ongoing and next generation planetary science missions are carefully evaluated and recommended in this white paper submitted by the WGLA to Planetary Decadal Survey.

[1]  S. Kieffer,et al.  A redetermination of the ice/vapor ratio of Enceladus' plumes: Implications for sublimation and the lack of a liquid water reservoir , 2009 .

[2]  R. H. Tyler,et al.  Ocean tides heat Enceladus , 2009 .

[3]  J. Lunine,et al.  FORMATION CONDITIONS OF ENCELADUS AND ORIGIN OF ITS METHANE RESERVOIR , 2009 .

[4]  Paul Withers,et al.  A review of observed variability in the dayside ionosphere of Mars , 2009 .

[5]  A. Levi,et al.  Corona-like atmospheric escape from KBOs: I. Gas dynamics , 2009 .

[6]  J. Petit,et al.  Can collisional activity produce a crystallization of Edgeworth-Kuiper Belt comets? , 2009 .

[7]  D. Ming,et al.  H2O at the Phoenix Landing Site , 2009, Science.

[8]  F. Daerden,et al.  Mars Water-Ice Clouds and Precipitation , 2009, Science.

[9]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[10]  Michael E. Brown,et al.  No sodium in the vapour plumes of Enceladus , 2009, Nature.

[11]  D. Trilling,et al.  Composition of KBO (50000) Quaoar , 2009 .

[12]  H. Lichtenegger,et al.  Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions. , 2009, Astrobiology.

[13]  Michael D. Smith,et al.  Strong Release of Methane on Mars in Northern Summer 2003 , 2009, Science.

[14]  C. Snodgrass,et al.  The size and thermal properties of the nucleus of Comet 22P/Kopff , 2009 .

[15]  Gilbert W. Collins,et al.  Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa , 2009 .

[16]  S. Stern Ejecta exchange and satellite color evolution in the Pluto system, with implications for KBOs and asteroids with satellites , 2008, 0805.3482.

[17]  J. Cui Analysis of Titan's neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements in the Closed Source Neutral mode , 2009 .

[18]  M. Belton,et al.  Deep Impact and sample return , 2008 .

[19]  David T. Young,et al.  Discovery of heavy negative ions in Titan's ionosphere , 2007 .

[20]  Angioletta Coradini,et al.  Dawn Mission to Vesta and Ceres , 2007 .

[21]  J. Waite,et al.  The Process of Tholin Formation in Titan's Upper Atmosphere , 2007, Science.

[22]  Michael J. Mumma,et al.  The organic composition of C/2001 A2 (LINEAR): II. Search for heterogeneity within a comet nucleus , 2007 .

[23]  Michael E. Brown,et al.  Volatile Loss and Retention on Kuiper Belt Objects , 2007 .

[24]  W. Delamere,et al.  Surface temperature of the nucleus of Comet 9P/Tempel 1 , 2007 .

[25]  Peter H. Schultz,et al.  The shape, topography, and geology of Tempel 1 from Deep Impact observations , 2007 .

[26]  Michael E. Brown,et al.  NEAR-INFRARED SPECTRA OF CENTAURS AND KUIPER BELT OBJECTS , 2007 .

[27]  C. Cockell The origin and emergence of life under impact bombardment , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  F. Flasar,et al.  CASSINI CIRS OBSERVATIONS OF A ROLL-OFF IN SATURN RING SPECTRA AT SUBMILLIMETER WAVELENGTHS , 2006 .

[29]  H. Melosh,et al.  Deep Impact: Excavating Comet Tempel 1 , 2005, Science.

[30]  M. Fulchignoni,et al.  Analysis of near-IR spectra of 1 Ceres and 4 Vesta, targets of the Dawn mission , 2005 .

[31]  Bruce Block,et al.  Ion Neutral Mass Spectrometer Results from the First Flyby of Titan , 2005, Science.

[32]  C. Sotin,et al.  Ceres: Evolution and current state , 2005 .

[33]  D. Saumon,et al.  Shock Compression of Deuterium and the Interiors of Jupiter and Saturn , 2004, astro-ph/0403393.

[34]  S. Sandford,et al.  An evolutionary connection between interstellar ices and IDPs? Clues from mass spectroscopy measurements of laboratory simulations , 2004 .

[35]  Elisabetta Pierazzo,et al.  Cometary Delivery of Biogenic Elements to Europa , 2002 .

[36]  A. Brack,et al.  Amino acids from ultraviolet irradiation of interstellar ice analogues , 2002, Nature.

[37]  Scott A. Sandford,et al.  Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues , 2002, Nature.

[38]  D. Deamer,et al.  The first cell membranes. , 2002, Astrobiology.

[39]  R E Johnson,et al.  Hydrogen peroxide on the surface of Europa. , 1999, Science.

[40]  John R. Spencer,et al.  Charge‐coupled device spectra of the Galilean satellites: Molecular oxygen on Ganymede , 1995 .

[41]  J. Greenberg,et al.  Interstellar molecule formation in grain mantles: The laboratory analog experiments, results and implications , 1979 .

[42]  E. J. Allin,et al.  The absorption spectrum of solid oxygen in the wavelength region from 12,000 Å to 3300 Å , 1962 .

[43]  M. Davidson,et al.  Earth, Moon and Planets , 1947, Nature.

[44]  Philosophical Transactions of the Royal Society B: biological sciences , 2019 .