Axiomatising Tree-Interpretable Structures

Generalising the notion of a prefix-recognisable graph to arbitrary relational structures we introduce the class of tree-interpretable structures. We prove that every tree-interpretable structure is finitely axiomatisable in guarded second-order logic with cardinality quantifiers.

[1]  Olaf Burkart Model checking rationally restricted right closures of recognizable graphs , 1997, INFINITY.

[2]  Colin Stirling,et al.  Decidability of bisimulation equivalence for normed pushdown processes , 1998, SIGA.

[3]  Achim Blumensath,et al.  Automatic structures , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[4]  David E. Muller,et al.  Groups, the Theory of Ends, and Context-Free Languages , 1983, J. Comput. Syst. Sci..

[5]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[6]  Géraud Sénizergues,et al.  Decidability of bisimulation equivalence for equational graphs of finite out-degree , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[7]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[8]  Orna Kupferman,et al.  An Automata-Theoretic Approach to Reasoning about Infinite-State Systems , 2000, CAV.

[9]  Klaus Barthelmann,et al.  When Can an Equational Simple Graph Be Generated by Hyperedge Replacement? , 1998, MFCS.

[10]  M. Rabin Decidability of second-order theories and automata on infinite trees. , 1969 .

[11]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs VII: Graphs as Relational Structures , 1992, Theor. Comput. Sci..

[12]  David E. Muller,et al.  The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..

[13]  Igor Walukiewicz Monadic second-order logic on tree-like structures , 2002, Theor. Comput. Sci..

[14]  Didier Caucal,et al.  On infinite transition graphs having a decidable monadic theory , 1996, Theor. Comput. Sci..

[15]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs IV: Definability Properties of Equational Graphs , 1990, Ann. Pure Appl. Log..

[16]  Gabriel M. Kuper,et al.  Constraint Databases , 2010, Springer Berlin Heidelberg.

[17]  Christophe Morvan,et al.  On Rational Graphs , 2000, FoSSaCS.

[18]  Anil Nerode,et al.  Automatic Presentations of Structures , 1994, LCC.

[19]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[20]  Martin Otto,et al.  Back and forth between guarded and modal logics , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[21]  Bruno Courcelle Structural Properties of Context-Free Sets of Graphs Generated by Vertex Replacement , 1995, Inf. Comput..