Rothe method and numerical analysis for history-dependent hemivariational inequalities with applications to contact mechanics

In this paper, an abstract evolutionary hemivariational inequality with a history-dependent operator is studied. First, a result on its unique solvability and solution regularity is proved by applying the Rothe method. Next, we introduce a numerical scheme to solve the inequality and derive error estimates. We apply the results to a quasistatic frictional contact problem in which the material is modeled with a viscoelastic constitutive law, the contact is given in the form of multivalued normal compliance, and friction is described with a subgradient of a locally Lipschitz potential. Finally, for the contact problem, we provide the optimal error estimate.

[1]  Mircea Sofonea,et al.  Penalization of history-dependent variational inequalities , 2013, European Journal of Applied Mathematics.

[2]  Mircea Sofonea,et al.  Numerical Analysis of Elliptic Hemivariational Inequalities , 2017, SIAM J. Numer. Anal..

[3]  P. Panagiotopoulos Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions , 1985 .

[4]  Louis B. Rall,et al.  Nonlinear Functional Analysis and Applications , 1971 .

[5]  M. Sofonea,et al.  Analysis of a dynamic contact problem for electro-viscoelastic cylinders , 2010 .

[6]  Nikolaos S. Papageorgiou,et al.  Nonhomogeneous Hemivariational Inequalities with Indefinite Potential and Robin Boundary Condition , 2017, J. Optim. Theory Appl..

[7]  P. Panagiotopoulos,et al.  Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications , 1999 .

[8]  Shengda Zeng,et al.  Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces , 2017 .

[9]  S. Migórski,et al.  A class of evolution variational inequalities with memory and its application to viscoelastic frictional contact problems , 2016 .

[10]  Jozef Kačur,et al.  Method of rothe in evolution equations , 1986 .

[11]  M. Sofonea,et al.  INTEGRODIFFERENTIAL HEMIVARIATIONAL INEQUALITIES WITH APPLICATIONS TO VISCOELASTIC FRICTIONAL CONTACT , 2008 .

[12]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[13]  Zdzisław Denkowski,et al.  An Introduction to Nonlinear Analysis: Theory , 2013 .

[14]  Stanisław Migórski,et al.  Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction , 2005 .

[15]  Krzysztof Bartosz,et al.  Numerical Methods for Evolution Hemivariational Inequalities , 2015 .

[16]  Mircea Sofonea,et al.  Advances in Variational and Hemivariational Inequalities , 2015 .

[17]  Shengda Zeng,et al.  A class of fractional differential hemivariational inequalities with application to contact problem , 2018 .

[18]  Nikolas S. Papageorgiou,et al.  An introduction to nonlinear analysis , 2003 .

[19]  Panagiotis D. Panagiotopoulos,et al.  Hemivariational Inequalities: Applications in Mechanics and Engineering , 1993 .

[20]  P. Panagiotopoulos Inequality problems in mechanics and applications , 1985 .

[21]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[22]  Vicentiu D. Radulescu,et al.  Inequality problems of quasi-hemivariational type involving set-valued operators and a nonlinear term , 2012, J. Glob. Optim..

[23]  S. Migórski,et al.  Analysis of a dynamic viscoelastic unilateral contact problem with normal damped response , 2016 .

[24]  S. Migórski,et al.  A Unified Approach to Dynamic Contact Problems in Viscoelasticity , 2006 .

[25]  Mircea Sofonea,et al.  Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems , 2012 .

[26]  Mircea Sofonea,et al.  History-dependent subdifferential inclusions and hemivariational inequalities in contact mechanics , 2011 .

[27]  Mircea Sofonea,et al.  History-dependent quasi-variational inequalities arising in contact mechanics , 2011, European Journal of Applied Mathematics.

[28]  Shengda Zeng,et al.  A class of differential hemivariational inequalities in Banach spaces , 2018, J. Glob. Optim..

[29]  Vicentiu D. Rădulescu,et al.  The Ekeland variational principle for equilibrium problems revisited and applications , 2015 .

[30]  Mircea Sofonea,et al.  History-dependent variational–hemivariational inequalities in contact mechanics ☆ , 2015 .

[31]  S. Migórski,et al.  Penalty and regularization method for variational‐hemivariational inequalities with application to frictional contact , 2018 .

[32]  Shengda Zeng,et al.  A Class of time-fractional hemivariational inequalities with application to frictional contact problem , 2018, Commun. Nonlinear Sci. Numer. Simul..

[33]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[34]  J. J. Telega,et al.  Models and analysis of quasistatic contact , 2004 .

[35]  M. Sofonea,et al.  Mathematical Models in Contact Mechanics , 2012 .

[36]  Carsten Carstensen,et al.  A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems , 1999 .

[37]  Mircea Sofonea,et al.  A penalty method for history-dependent variational-hemivariational inequalities , 2018, Comput. Math. Appl..

[38]  Anna Nagurney,et al.  Variational Inequalities , 2009, Encyclopedia of Optimization.

[39]  P. D. Panagiotopoulos,et al.  Mathematical Theory of Hemivariational Inequalities and Applications , 1994 .

[40]  M. Sofonea,et al.  Nonlinear Inclusions and Hemivariational Inequalities , 2013 .

[41]  M. Sofonea,et al.  Evolutionary Inclusions and Hemivariational Inequalities , 2013 .

[42]  Anna Ochal,et al.  Hemivariational inequality for viscoelastic contact problem with slip-dependent friction , 2005 .

[43]  W. Han,et al.  Analysis and Approximation of Contact Problems with Adhesion or Damage , 2005 .

[44]  Jaroslav Haslinger,et al.  Finite Element Method for Hemivariational Inequalities , 1999 .

[45]  Wenbin Chen,et al.  Numerical Analysis of History-dependent Variational-hemivariational Inequalities , 2020, ArXiv.

[46]  Mircea Sofonea,et al.  A Class of Variational-Hemivariational Inequalities with Applications to Frictional Contact Problems , 2014, SIAM J. Math. Anal..

[47]  Nikolaos S. Papageorgiou Existence of solutions for second-order evolution inclusions , 1994 .

[48]  W. Han,et al.  Analysis of a general dynamic history-dependent variational–hemivariational inequality , 2017 .

[49]  M. Sofonea,et al.  Fully history-dependent quasivariational inequalities in contact mechanics , 2016 .

[50]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[51]  A. Kulig Hyperbolic Hemivariational Inequalities for Dynamic Viscoelastic Contact Problems , 2013 .

[52]  Christof Eck,et al.  Unilateral Contact Problems: Variational Methods and Existence Theorems , 2005 .

[53]  Stanislaw Migórski,et al.  Quasi-Static Hemivariational Inequality via Vanishing Acceleration Approach , 2009, SIAM J. Math. Anal..

[54]  S. Migórski,et al.  Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhesive contact model , 2018, Nonlinear Analysis: Real World Applications.

[55]  S. Migórski,et al.  Dynamic history-dependent variational-hemivariational inequalities with applications to contact mechanics , 2017 .

[56]  W. Han,et al.  Plasticity: Mathematical Theory and Numerical Analysis , 1999 .

[57]  Muhammad Aslam Noor,et al.  Hemivariational inequalities , 2005 .

[58]  S. Migórski,et al.  Solvability and continuous dependence results for second order nonlinear evolution inclusions with a Volterra-type operator☆ , 2012 .

[59]  W. Han,et al.  Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity , 2002 .

[60]  S. Migórski,et al.  Noncoercive hyperbolic variational inequalities with applications to contact mechanics , 2017 .