Factoring bivariate sparse (lacunary) polynomials

Abstract We present a deterministic algorithm for computing all irreducible factors of degree ⩽ d of a given bivariate polynomial f ∈ K [ x , y ] over an algebraic number field K and their multiplicities, whose running time is polynomial over the rationals, in the bit length of the sparse encoding of the input and in d. Moreover, we show that the factors over Q ¯ of degree ⩽ d which are not binomials can also be computed in time polynomial in the sparse length of the input and in d.

[1]  Erich Kaltofen,et al.  On the complexity of factoring bivariate supersparse (Lacunary) polynomials , 2005, ISSAC.

[2]  Minoration effective de la hauteur des points d'une courbe de $\mathbb {G}_m^2$ définie sur $\mathbb {Q}$ , 2005 .

[3]  E. Berlekamp Factoring polynomials over large finite fields* , 1970, SYMSAC '71.

[4]  H. Lenstra Finding small degree factors of lacunary polynomials , 1999 .

[5]  Erich Kaltofen,et al.  Effective Noether irreducibility forms and applications , 1991, STOC '91.

[6]  Arjen K. Lenstra Factoring Multivariate Polynomials over Algebraic Number Fields , 1987, SIAM J. Comput..

[7]  Edward Dobrowolski,et al.  On a question of Lehmer and the number of irreducible factors of a polynomial , 1979 .

[8]  S. Comput,et al.  POLYNOMIAL-TIME REDUCTIONS FROM MULTIVARIATE TO BI- AND UNIVARIATE INTEGRAL POLYNOMIAL FACTORIZATION* , 1985 .

[9]  Quelques aspects diophantiens des variétés toriques projectives , 2004, math/0411084.

[10]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[11]  H. Lenstra On the factorization of lacunary polynomials , 1999 .

[12]  H. Zassenhaus On Hensel factorization, I , 1969 .

[13]  Joseph H. Silverman,et al.  Diophantine Geometry: An Introduction , 2000, The Mathematical Gazette.

[14]  Erich Kaltofen,et al.  Finding small degree factors of multivariate supersparse (lacunary) polynomials over algebraic number fields , 2006, ISSAC '06.

[15]  Grégoire Lecerf,et al.  Improved dense multivariate polynomial factorization algorithms , 2007, J. Symb. Comput..

[16]  D. Zagier Algebraic numbers close to both 0 and 1 , 1993 .

[17]  F. Amoroso,et al.  MINORATION DE LA HAUTEUR NORMALISÉE DANS UN TORE , 2003, Journal of the Institute of Mathematics of Jussieu.

[18]  Paul Voutier,et al.  An effective lower bound for the height of algebraic numbers , 2012, 1211.3110.

[19]  Felipe Cucker,et al.  A Polynomial Time Algorithm for Diophantine Equations in One Variable , 1999, J. Symb. Comput..

[20]  Arjen K. Lenstra Factoring Multivariate Integral Polynomials , 1984, Theor. Comput. Sci..

[21]  J. Klueners,et al.  Factoring polynomials over global fields , 2004, math/0409510.

[22]  Shou-wu Zhang SMALL POINTS AND ADELIC METRICS , 1994 .

[23]  Corentin Pontreau GEOMETRIC LOWER BOUNDS FOR THE NORMALIZED HEIGHT OF HYPERSURFACES , 2006 .

[24]  F. Amoroso,et al.  Minoration de la hauteur normalisée des hypersurfaces , 2000 .

[25]  Peter J. Weinberger,et al.  Factoring Polynomials Over Algebraic Number Fields , 1976, TOMS.

[26]  S. David,et al.  Minorations des hauteurs normalisées des sous-variétés des tores , 1999 .

[27]  Patrice Philippon,et al.  Sur des hauteurs alternatives. I , 1991 .