On maximum signless Laplacian Estrada indices of k-trees

Abstract The signless Laplacian Estrada index of a graph G is defined as S L E E ( G ) = ∑ i = 1 n e q i , where q 1 , q 2 , … , q n are the eigenvalues of the signless Laplacian matrix of G . A k -tree is either a complete graph on k vertices or a graph obtained from a smaller k -tree by adjoining a new vertex together with k edges connecting it to a k -clique. Denote by T n k the set of all k -trees of order n . In this paper, we characterize the graphs among T n k with the first (resp. the second) largest S L E E .

[1]  Ernesto Estrada,et al.  Statistical-mechanical approach to subgraph centrality in complex networks , 2007, 0905.4098.

[2]  D. Cvetkovic,et al.  Signless Laplacians of finite graphs , 2007 .

[3]  G. Dahl,et al.  New bounds for the signless Laplacian spread , 2018, Linear Algebra and its Applications.

[4]  Ivan Gutman,et al.  Graphs with maximum Laplacian and signless Laplacian Estrada index , 2016, Discret. Math..

[5]  Ernesto Estrada,et al.  Characterization of the folding degree of proteins , 2002, Bioinform..

[6]  Kun Wang,et al.  On the signless Laplacian Estrada index of bicyclic graphs , 2018, Discret. Appl. Math..

[7]  Jianping Li,et al.  Characterizing graphs with maximal Laplacian Estrada index , 2015 .

[8]  Yi-Zheng Fan,et al.  Maximum Estrada index of bicyclic graphs , 2012, Discret. Appl. Math..

[9]  J. A. Rodríguez-Velázquez,et al.  Spectral measures of bipartivity in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Yuan Hong,et al.  Tree-width, clique-minors, and eigenvalues , 2004, Discret. Math..

[11]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Fei Huang,et al.  On maximum Estrada indices of k-trees , 2015 .

[13]  Shuchao Li,et al.  Sharp bounds for Zagreb indices of maximal outerplanar graphs , 2011, J. Comb. Optim..

[14]  Ahmad Gholami,et al.  On maximum signless Laplacian Estrada index of graphs with given parameters II , 2014, Electron. J. Graph Theory Appl..

[15]  Ernesto Estrada Characterization of the amino acid contribution to the folding degree of proteins , 2004, Proteins.

[16]  Ahmad Gholami,et al.  On maximum signless Laplacian Estrada index of graphs with given parameters , 2014, Ars Math. Contemp..

[17]  Kun Wang,et al.  On the signless Laplacian Estrada index of cacti , 2019, Discret. Appl. Math..

[18]  Yi Wang,et al.  On the maximum Laplacian Estrada index of graphs , 2016 .

[19]  Ali Reza Ashrafi,et al.  Note on Estrada and $L$-Estrada indices of graphs , 2009 .

[20]  Lowell W. Beineke,et al.  The number of labeled k-dimensional trees , 1969 .

[21]  Keivan Hassani Monfared,et al.  An analog of Matrix Tree Theorem for signless Laplacians , 2018, Linear Algebra and its Applications.

[22]  Bing Wei,et al.  Sharp bounds of the Zagreb indices of k-trees , 2014, J. Comb. Optim..

[23]  Shaohui Wang,et al.  Multiplicative Zagreb indices of k-trees , 2015, Discret. Appl. Math..

[24]  Dominique de Caen,et al.  An upper bound on the sum of squares of degrees in a graph , 1998, Discret. Math..

[25]  F. Harary,et al.  On acyclic simplicial complexes , 1968 .

[26]  W. Haemers,et al.  Which graphs are determined by their spectrum , 2003 .

[27]  Ernesto Estrada Characterization of 3D molecular structure , 2000 .

[28]  S. K. Ayyaswamy,et al.  Signless Laplacian Estrada Index , 2011 .

[29]  Bing Wei,et al.  Independence polynomials of k-tree related graphs , 2010, Discret. Appl. Math..

[30]  Ramin Nasiri,et al.  The Signless Laplacian Estrada Index of Unicyclic Graphs , 2014 .

[31]  Alois Panholzer,et al.  Ancestors and descendants in evolving k‐tree models , 2014, Random Struct. Algorithms.

[32]  Wen-Huan Wang,et al.  Graphs with the maximal Estrada indices , 2014 .

[33]  Jing Huang,et al.  On extremal bipartite bicyclic graphs , 2016 .

[34]  Shuchao Li,et al.  On the signless Laplacian spectra of k-trees , 2015, 1507.02536.

[35]  Huiqing Liu,et al.  Sharp Bounds on the Signless Laplacian Estrada Index of Graphs , 2014 .

[36]  Ira M. Gessel,et al.  Counting unlabeled k-trees , 2013, J. Comb. Theory, Ser. A.

[37]  Zhibin Du,et al.  On the Estrada and Laplacian Estrada indices of graphs , 2011 .