Current effect on suspended graphene nanoribbon studied using in-situ transmission electron microscopy

[1]  H. Mizuta,et al.  In-situ electrical conductance measurement of suspended ultra-narrow graphene nanoribbons observed via transmission electron microscopy , 2020, Nanotechnology.

[2]  H. Mizuta,et al.  Origin of nonlinear current-voltage curves for suspended zigzag edge graphene nanoribbons , 2020 .

[3]  Dong Su Lee,et al.  Transformation and Evaporation of Surface Adsorbents on a Graphene “Hot Plate” , 2020, ACS applied materials & interfaces.

[4]  A. Hirsch,et al.  Mechanical cleaning of graphene using in situ electron microscopy , 2020, Nature Communications.

[5]  Mingdi Yan,et al.  Removing contaminants from transferred CVD graphene , 2020, Nano Research.

[6]  D. Mariolle,et al.  CF4/H2 Plasma Cleaning of Graphene Regenerates Electronic Properties of the Pristine Material , 2019, ACS Applied Nano Materials.

[7]  Wei Zhang,et al.  High current carrying and thermal conductive copper-carbon conductors , 2019, Nanotechnology.

[8]  P. Pham Cleaning of graphene surfaces by low-pressure air plasma , 2018, Royal Society Open Science.

[9]  A. Islam,et al.  Atomic level cleaning of poly-methyl-methacrylate residues from the graphene surface using radiolized water at high temperatures , 2017 .

[10]  Jannik C. Meyer,et al.  Cleaning graphene: Comparing heat treatments in air and in vacuum , 2017, 1704.08038.

[11]  Xing Zhang,et al.  Ultraclean suspended monolayer graphene achieved by in situ current annealing , 2017, Nanotechnology.

[12]  R. Kitaura,et al.  Fabrication and In Situ Transmission Electron Microscope Characterization of Free-Standing Graphene Nanoribbon Devices. , 2016, ACS nano.

[13]  C. Chan,et al.  Clean graphene surface through high temperature annealing , 2015 .

[14]  D. Ferrah,et al.  Dry efficient cleaning of poly-methyl-methacrylate residues from graphene with high-density H-2 and H-2-N-2 plasmas , 2015 .

[15]  A. Turchanin,et al.  Dry-cleaning of graphene , 2014 .

[16]  Moon J. Kim,et al.  Rapid Selective Etching of PMMA Residues from Transferred Graphene by Carbon Dioxide , 2013 .

[17]  L. Sundar,et al.  Convective heat transfer and friction factor correlations of nanofluid in a tube and with inserts: A review , 2013 .

[18]  Ji Won Suk,et al.  Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. , 2013, Nano letters.

[19]  Lukas Novotny,et al.  Graphene transfer with reduced residue , 2013, 1301.4106.

[20]  J. Longchamp,et al.  Ultraclean freestanding graphene by platinum-metal catalysis , 2012, 1210.6824.

[21]  L. Vandersypen,et al.  Lattice expansion in seamless bilayer graphene constrictions at high bias. , 2012, Nano letters.

[22]  Jae-Young Choi,et al.  Si-compatible cleaning process for graphene using low-density inductively coupled plasma. , 2012, ACS nano.

[23]  A. Kalabukhov,et al.  Cleaning graphene using atomic force microscope , 2012 .

[24]  L. Vandersypen,et al.  Graphene at high bias: cracking, layer by layer sublimation, and fusing. , 2012, Nano letters.

[25]  G. Duesberg,et al.  The Effect of Downstream Plasma Treatments on Graphene Surfaces , 2012 .

[26]  Gianaurelio Cuniberti,et al.  Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing , 2012, Scientific Reports.

[27]  C. Jin,et al.  Graphene annealing: how clean can it be? , 2012, Nano letters.

[28]  L. Vandersypen,et al.  Mechanical cleaning of graphene , 2011, 1112.0250.

[29]  Ferdinand Scholz,et al.  Transformations of carbon adsorbates on graphene substrates under extreme heat. , 2011, Nano letters.

[30]  A. T. Johnson,et al.  In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope. , 2011, Nano letters.

[31]  H. B. Weber,et al.  Current annealing and electrical breakdown of epitaxial graphene , 2011 .

[32]  J. Mutus,et al.  Low-energy electron point projection microscopy of suspended graphene, the ultimate ‘microscope slide’ , 2011, 1102.1758.

[33]  B. Wees,et al.  Quantized conductance of a suspended graphene nanoconstriction , 2011, 1102.0434.

[34]  K. Tsukagoshi,et al.  Effect of current annealing on electronic properties of multilayer graphene , 2010 .

[35]  R. Piner,et al.  Transfer of large-area graphene films for high-performance transparent conductive electrodes. , 2009, Nano letters.

[36]  P. Lu,et al.  In situ observation of graphene sublimation and multi-layer edge reconstructions , 2009, Proceedings of the National Academy of Sciences.

[37]  A. Reina,et al.  Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons , 2009, Science.

[38]  N. Kybert,et al.  Intrinsic response of graphene vapor sensors. , 2008, Nano letters.

[39]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[40]  A. Bachtold,et al.  Current-induced cleaning of graphene , 2007, 0709.0607.

[41]  A. Fedorov,et al.  Analysis of electron beam induced deposition (EBID) of residual hydrocarbons in electron microscopy , 2007 .

[42]  R. Makitra,et al.  Solubility of Polymethyl Methacrylate in Organic Solvents , 2005 .

[43]  J. J. Clement,et al.  Electromigration in copper conductors , 1995 .

[44]  Jun-Y. Park,et al.  Effect of Annealing in Ar/H2 Environment on Chemical Vapor Deposition-Grown Graphene Transferred With Poly (Methyl Methacrylate) , 2015, IEEE Transactions on Nanotechnology.