Inverted pendulum under hysteretic control: stability zones and periodic solutions

In this paper, the mathematical model of the stabilization of the inverted pendulum with vertically oscillating suspension under hysteretic control is constructed. In the frame of the presented model, the stability criteria for the linearized equations of motion are found. We have made the numerical construction of the stability zones in the two-dimensional parameter space. Dependencies between initial conditions and driven parameters that provide periodic oscillations of the pendulum are obtained.

[1]  Benedetto Piccoli,et al.  Time Optimal Swing-Up of the Planar Pendulum , 2008, IEEE Trans. Autom. Control..

[2]  Olfa Boubaker,et al.  The inverted pendulum: A fundamental benchmark in control theory and robotics , 2012, International Conference on Education and e-Learning Innovations.

[3]  Jian Huang,et al.  Modeling and Velocity Control for a Novel Narrow Vehicle Based on Mobile Wheeled Inverted Pendulum , 2013, IEEE Transactions on Control Systems Technology.

[4]  A. C. Soudack,et al.  Dynamics and stability state-space of a controlled inverted pendulum , 1996 .

[5]  Naomi Ehrich Leonard,et al.  Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem , 2000, IEEE Trans. Autom. Control..

[6]  A. Stephenson XX. On induced stability , 1908 .

[7]  An improved criterion for Kapitza's pendulum stability , 2011 .

[8]  C. Sato Correction of Stability Curves in Hill-Meissner's Equation , 1966 .

[9]  M. A. Krasnoselʹskii,et al.  Nonlinear almost periodic oscillations , 1973 .

[10]  Guohui Li,et al.  Dynamic characteristic prediction of inverted pendulum under the reduced-gravity space environments , 2010 .

[11]  E. Butikov Subharmonic resonances of the parametrically driven pendulum , 2002 .

[12]  Dewen Hu,et al.  Balancing a simulated inverted pendulum through motor imagery: An EEG-based real-time control paradigm , 2012, Neuroscience Letters.

[13]  Alfred Brian Pippard The inverted pendulum , 1987 .

[14]  Y. Yavin Control of a rotary inverted pendulum , 1999 .

[15]  P. L. Kapitza Маятник с вибрирующим подвесом , 1951 .

[16]  V. A. Pliss Nonlocal Problems of the Theory of Oscillations , 1966 .

[17]  R. Lozano,et al.  Stabilization of the inverted pendulum around its homoclinic orbit , 2000 .

[18]  Inverted spring pendulum driven by a periodic force: linear versus nonlinear analysis , 2008 .

[19]  Dennis S. Bernstein,et al.  Stabilization of a 3D axially symmetric pendulum , 2008, Autom..

[20]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[21]  G. Mata,et al.  Effective Hamiltonian and dynamic stability of the inverted pendulum , 2004 .

[22]  F. L. Chernousko,et al.  Time-optimal swing-up feedback control of a pendulum , 2006 .

[23]  Panganamala Ramana Kumar,et al.  Real-Time Middleware for Networked Control Systems and Application to an Unstable System , 2013, IEEE Transactions on Control Systems Technology.

[24]  David Rakhmilʹevich Merkin,et al.  Introduction to the Theory of Stability , 1996 .

[25]  Bernd Krauskopf,et al.  Complex balancing motions of an inverted pendulum subject to delayed feedback control , 2004 .

[26]  Genqi Xu,et al.  Expansion of solution of an inverted pendulum system with time delay , 2011, Appl. Math. Comput..

[27]  Jia-Jun Wang,et al.  Simulation studies of inverted pendulum based on PID controllers , 2011, Simul. Model. Pract. Theory.

[28]  L.-H. Chang,et al.  Design of nonlinear controller for bi-axial inverted pendulum system , 2007 .

[29]  Mahmudur Rahman,et al.  Balancing of an Inverted Pendulum Using PD Controller , 2012 .

[30]  S. A. Reshmin,et al.  A time-optimal control synthesis for a nonlinear pendulum , 2007 .

[31]  Katsuhisa Furuta,et al.  Swinging up a pendulum by energy control , 1996, Autom..

[32]  Markus Schöberl,et al.  Applications of energy based control methods for the inverted pendulum on a cart , 2009, Robotics Auton. Syst..