Hadwiger’s Theorem for definable functions ☆

Abstract Hadwiger’s Theorem states that E n -invariant convex-continuous valuations of definable sets in R n are linear combinations of intrinsic volumes. We lift this result from sets to data distributions over sets, specifically, to definable R -valued functions on R n . This generalizes intrinsic volumes to (dual pairs of) non-linear valuations on functions and provides a dual pair of Hadwiger classification theorems.

[1]  Charles Steinhorn,et al.  Tame Topology and O-Minimal Structures , 2008 .

[2]  Jörg Schürmann,et al.  Topology of Singular Spaces and Constructible Sheaves , 2004 .

[3]  Сабир Меджидович Гусейн-Заде,et al.  Интегрирование по отношению к эйлеровой характеристике и его приложения@@@Integration with respect to the Euler characteristic and its applications , 2010 .

[4]  R. Ghrist,et al.  Euler–Bessel and Euler–Fourier transforms , 2010, 1011.4494.

[5]  塩田 昌弘,et al.  Geometry of subanalytic and semialgebraic sets , 1997 .

[6]  Omer Bobrowski,et al.  EULER INTEGRATION OF GAUSSIAN RANDOM FIELDS AND PERSISTENT HOMOLOGY , 2010, 1003.5175.

[7]  Yuliy Baryshnikov,et al.  Target Enumeration via Euler Characteristic Integrals , 2009, SIAM J. Appl. Math..

[8]  M. Ludwig Valuations on function spaces , 2011 .

[9]  Theory of Valuations on Manifolds: A Survey , 2006, math/0603372.

[10]  H. Hadwigeb,et al.  Integralsätze im Konvexring , 1956 .

[11]  Daniel A. Klain A short proof of Hadwiger's characterization theorem , 1995 .

[12]  Yuliy Baryshnikov,et al.  Euler integration over definable functions , 2009, Proceedings of the National Academy of Sciences.

[13]  Masaki Kashiwara,et al.  Sheaves on Manifolds , 1990 .

[14]  九州大学大学院数理学研究院,et al.  Notes on integral geometry and harmonic analysis , 2010 .

[15]  J. Fu,et al.  Curvature Measures of Subanalytic Sets , 1994 .

[16]  M. Coste AN INTRODUCTION TO O-MINIMAL GEOMETRY , 2002 .

[17]  M. Kashiwara Index theorem for constructible sheaves , 1985 .

[18]  Andreas Bernig,et al.  Algebraic Integral Geometry , 2010, 1004.3145.

[19]  David J. Srolovitz,et al.  The von Neumann relation generalized to coarsening of three-dimensional microstructures , 2007, Nature.

[20]  H. Fédérer Geometric Measure Theory , 1969 .

[21]  L. Nicolaescu On the normal cycles of subanalytic sets , 2010, 1003.1631.

[22]  Robert J. Adler,et al.  Topological complexity of smooth random functions , 2011 .

[23]  Robert Schrader,et al.  On the curvature of piecewise flat spaces , 1984 .

[24]  S. Alesker Valuations on Manifolds and Integral Geometry , 2009, 0905.4046.

[25]  Stephen H. Schanuel What is the length of a potato , 1986 .

[26]  L. Nicolaescu CONORMAL CYCLES OF TAME SETS , 2010 .

[27]  Daniel A. Klain,et al.  Introduction to Geometric Probability , 1997 .

[28]  Pierre Schapira,et al.  Operations on constructible functions , 1991 .

[29]  R. Adler,et al.  The Geometry of Random Fields , 1982 .