Analysis of the absorbing layers for the weakly-compressible lattice Boltzmann methods

Abstract It has been demonstrated that Lattice Boltzmann methods (LBMs) are very efficient for Computational Aeroacoustics (CAA). In order to address the issue of absorbing acoustic boundary conditions for LBM, three kinds of damping terms are proposed and added to the right hand side of the LBM governing equations. According to the classical theory, these terms play an important role to damp and minimize the acoustic wave reflections from computational boundaries. The corresponding macroscopic equations with the damping terms are recovered for analyzing the macroscopic behaviors of the these damping terms and determining the critical absorbing strength. The dissipative and dispersive properties of the proposed absorbing layer terms are then further analyzed considering the linearized LBM equations. They are explored in the wave-number spaces via the Von Neumann analysis. The related damping strength critical values and the optimal absorbing term are discussed. Finally, some benchmark problems are implemented to assess the theoretical results.

[1]  Y. Qian,et al.  Complete Galilean-invariant lattice BGK models for the Navier-Stokes equation , 1998 .

[2]  Ali Mani,et al.  Analysis and optimization of numerical sponge layers as a nonreflective boundary treatment , 2012, J. Comput. Phys..

[3]  J. Buick,et al.  Gravity in a lattice Boltzmann model , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Pierre Sagaut,et al.  Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics , 2009, J. Comput. Phys..

[5]  D. Durran Numerical Methods for Fluid Dynamics , 2010 .

[6]  Mahdi Tekitek,et al.  Towards perfectly matching layers for lattice Boltzmann equation , 2009, Comput. Math. Appl..

[7]  S. Orszag,et al.  Approximation of radiation boundary conditions , 1981 .

[8]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[9]  D. M. Campbell,et al.  Lattice BGK simulation of sound waves , 1998 .

[10]  C. Buckley,et al.  Lattice Boltzmann BGK simulation of nonlinear sound waves: the development of a shock front , 2000 .

[11]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[12]  Pierre Sagaut,et al.  Lattice Boltzmann method with selective viscosity filter , 2009, J. Comput. Phys..

[13]  Ying Zhou,et al.  Absorbing boundary conditions for the Euler and Navier-Stokes equations with the spectral difference method , 2010, J. Comput. Phys..

[14]  Tim Colonius,et al.  MODELING ARTIFICIAL BOUNDARY CONDITIONS FOR COMPRESSIBLE FLOW , 2004 .

[15]  Yan Zhang,et al.  Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence , 2009 .

[16]  Hui Xu,et al.  A lifting relation from macroscopic variables to mesoscopic variables in lattice Boltzmann method: Derivation, numerical assessments and coupling computations validation , 2011, 1104.3958.

[17]  D. d'Humières,et al.  Multiple–relaxation–time lattice Boltzmann models in three dimensions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  Daniel J. Bodony,et al.  Analysis of sponge zones for computational fluid mechanics , 2006, J. Comput. Phys..

[19]  R. So,et al.  Lattice Boltzmann Method Simulation of Aeroacoustics and Nonreflecting Boundary Conditions , 2007 .

[20]  Pierre Sagaut,et al.  Sensitivity analysis and determination of free relaxation parameters for the weakly-compressible MRT-LBM schemes , 2011, J. Comput. Phys..

[21]  Pierre Sagaut,et al.  Optimal low-dispersion low-dissipation LBM schemes for computational aeroacoustics , 2011, J. Comput. Phys..

[22]  Lattice Boltzmann simulations of the acoustic radiation from waveguides , 2007 .

[23]  Pierre Lallemand,et al.  Towards higher order lattice Boltzmann schemes , 2008, 0811.0599.

[24]  Thomas L. Geers,et al.  Evaluation of the Perfectly Matched Layer for Computational Acoustics , 1998 .

[25]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[26]  B. Shi,et al.  Discrete lattice effects on the forcing term in the lattice Boltzmann method. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  N. Fueyo,et al.  Characteristic nonreflecting boundary conditions for open boundaries in lattice Boltzmann methods. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  P. Lallemand,et al.  Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  X. M. Li,et al.  One-step aeroacoustics simulation using lattice Boltzmann method , 2006 .

[30]  D. Durran Numerical Methods for Fluid Dynamics: With Applications to Geophysics , 2010 .

[31]  Pierre Sagaut,et al.  Large-eddy simulation for acoustics , 2007 .

[32]  J. Freund A Simple Method for Computing Far-Field Sound in Aeroacoustic Computations , 2000 .

[33]  Jochen Fröhlich,et al.  A Pseudospectral Chebychev method for the 2D Wave Equation with Domain Stretching and Absorbing Boun , 1995 .

[34]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[35]  E. Kam,et al.  Non-Reflecting Boundary Conditions for One-Step LBM Simulation of Aeroacoustics , 2006 .