Synthetic exponential control charts with unknown parameter

ABSTRACT The existing synthetic exponential control charts are based on the assumption of known in-control parameter. However, the in-control parameter has to be estimated from a Phase I dataset. In this article, we use the exact probability distribution, especially the percentiles, mean, and standard deviation of the conditional average run length (ARL) to evaluate the effect of parameter estimation on the performance of the Phase II synthetic exponential charts. This approach accounts for the variability in the conditional ARL values of the synthetic chart obtained by different practitioners. Since parameter estimation results in more false alarms than expected, we develop an exact method to design the adjusted synthetic charts with desired conditional in-control performance. Results of known and unknown in-control parameter cases show that the control limit of the conforming run length sub-chart of the synthetic chart should be as small as possible.

[1]  William H. Woodall,et al.  The Difficulty in Designing Shewhart X̄ and X Control Charts with Estimated Parameters , 2015 .

[2]  Thong Ngee Goh,et al.  Cumulative quantity control charts for monitoring production processes , 2000 .

[3]  Fadel M. Megahed,et al.  Geometric Charts with Estimated Control Limits , 2013, Qual. Reliab. Eng. Int..

[4]  James M. Lucas,et al.  Counted Data CUSUM's , 1985 .

[5]  Michael B. C. Khoo,et al.  The Synthetic Mean Square Error Control Chart , 2014, Commun. Stat. Simul. Comput..

[6]  Thong Ngee Goh,et al.  Design of exponential control charts using a sequential sampling scheme , 2006 .

[7]  Connie M. Borror,et al.  Robustness of the time between events CUSUM , 2003 .

[8]  Philippe Castagliola,et al.  Synthetic Phase II Shewhart‐type Attributes Control Charts When Process Parameters are Estimated , 2014, Qual. Reliab. Eng. Int..

[9]  Athanasios C. Rakitzis,et al.  Monitoring exponential data using two-sided control charts with runs rules , 2016 .

[10]  Pei-Wen Chen,et al.  An ARL-unbiased design of time-between-events control charts with runs rules , 2011 .

[11]  Subhabrata Chakraborti,et al.  Phase II Shewhart‐type Control Charts for Monitoring Times Between Events and Effects of Parameter Estimation , 2016, Qual. Reliab. Eng. Int..

[12]  Trevor A Spedding,et al.  A Synthetic Control Chart for Detecting Small Shifts in the Process Mean , 2000 .

[13]  Thong Ngee Goh,et al.  Some effective control chart procedures for reliability monitoring , 2002, Reliab. Eng. Syst. Saf..

[14]  William H. Woodall,et al.  Evaluating and Improving the Synthetic Control Chart , 2002 .

[15]  Min Xie,et al.  Design of exponential control charts based on average time to signal using a sequential sampling scheme , 2015 .

[16]  Axel Gandy,et al.  Guaranteed Conditional Performance of Control Charts via Bootstrap Methods , 2011, 1111.4180.

[17]  Fred Spiring,et al.  Introduction to Statistical Quality Control , 2007, Technometrics.

[18]  Ning Wang,et al.  The Effect of Parameter Estimation on Upper-sided Bernoulli Cumulative Sum Charts , 2013, Qual. Reliab. Eng. Int..

[19]  Douglas C. Montgomery,et al.  Some Current Directions in the Theory and Application of Statistical Process Monitoring , 2014 .

[20]  William H. Woodall,et al.  A Reevaluation of the Adaptive Exponentially Weighted Moving Average Control Chart When Parameters are Estimated , 2015, Qual. Reliab. Eng. Int..

[21]  Yuan Cheng,et al.  Optimal design of a synthetic chart for monitoring process dispersion with unknown in-control variance , 2015, Comput. Ind. Eng..

[22]  Fang Yen Yen,et al.  Synthetic-Type Control Charts for Time-Between-Events Monitoring , 2013, PloS one.

[23]  Maria E. Calzada,et al.  A Note on the Lower-Sided Synthetic Chart for Exponentials , 2003 .

[24]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[25]  Giovanni Celano,et al.  A Synthetic Control Chart for Monitoring the Ratio of Two Normal Variables , 2016, Qual. Reliab. Eng. Int..

[26]  William H. Woodall,et al.  Another Look at the EWMA Control Chart with Estimated Parameters , 2015 .

[27]  Philippe Castagliola,et al.  The Exact Run Length Distribution and Design of the Shewhart Chart with Estimated Parameters Based on Median Run Length , 2016, Commun. Stat. Simul. Comput..

[28]  Min Zhang,et al.  Exponential CUSUM Charts with Estimated Control Limits , 2014, Qual. Reliab. Eng. Int..

[29]  William H. Woodall,et al.  A Comparison of the Performance of Phase II Simple Linear Profile Control Charts when Parameters are Estimated , 2015, Commun. Stat. Simul. Comput..

[30]  Christian H. Weiß,et al.  Properties of the exponential EWMA chart with parameter estimation , 2010, Qual. Reliab. Eng. Int..

[31]  Patrick D. Bourke,et al.  Detecting a shift in fraction nonconforming using runlength control charts with 100% inspection , 1991 .

[32]  Joel Smith,et al.  Control Charts Based on the Exponential Distribution: Adapting Runs Rules for the t Chart , 2013 .

[33]  Philippe Castagliola,et al.  Some Recent Developments on the Effects of Parameter Estimation on Control Charts , 2014, Qual. Reliab. Eng. Int..

[34]  Maria E. Calzada,et al.  The Generalized Synthetic Chart , 2009 .

[35]  Eugenio K. Epprecht,et al.  Synthetic control chart for monitoring the pprocess mean and variance , 2006 .

[36]  William H. Woodall,et al.  Guaranteed conditional performance of the S2 control chart with estimated parameters , 2015 .

[37]  Athanasios C. Rakitzis,et al.  On the performance of modified runs rules charts with estimated parameters , 2017, Commun. Stat. Simul. Comput..

[38]  Min Xie,et al.  Monitoring of Time-Between-Events with a Generalized Group Runs Control Chart , 2016, Qual. Reliab. Eng. Int..

[39]  Stefan H Steiner,et al.  Assessing the effect of estimation error on risk-adjusted CUSUM chart performance. , 2012, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[40]  Maria E. Calzada,et al.  A synthetic control chart for the coefficient of variation , 2013 .