A two-qubit molecular architecture for electron-mediated nuclear quantum simulation

A molecular architecture where two vanadyl-based qubits are linked together is herein described and investigated as a platform for quantum simulation.

[1]  E. Coronado,et al.  Three addressable spin qubits in a molecular single-ion magnet , 2016, 1610.03994.

[2]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[3]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[4]  Alessandro Chiesa,et al.  Molecular nanomagnets with switchable coupling for quantum simulation , 2014, Scientific Reports.

[5]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[6]  M. Chiesa,et al.  Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits. , 2016, Journal of the American Chemical Society.

[7]  Gerhard Klimeck,et al.  Silicon quantum processor with robust long-distance qubit couplings , 2015, Nature Communications.

[8]  S. A. Lyon,et al.  Bang–bang control of fullerene qubits using ultrafast phase gates , 2006, quant-ph/0601008.

[9]  M. Chiesa,et al.  Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety. , 2016, Journal of the American Chemical Society.

[10]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[11]  E. McInnes,et al.  Physical studies of heterometallic rings: an ideal system for studying magnetically-coupled systems. , 2013, Chemical Society reviews.

[12]  J. Berry,et al.  Diamagnetic Corrections and Pascal's Constants , 2008 .

[13]  A. Caneschi,et al.  Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits , 2015, Chemical science.

[14]  Paolo Santini,et al.  A modular design of molecular qubits to implement universal quantum gates , 2016, Nature Communications.

[15]  Eufemio Moreno-Pineda,et al.  Molecular spin qudits for quantum algorithms. , 2018, Chemical Society reviews.

[16]  Joseph M. Zadrozny,et al.  Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits. , 2016, Journal of the American Chemical Society.

[17]  Petr Neugebauer,et al.  Room temperature quantum coherence in a potential molecular qubit , 2014, Nature Communications.

[18]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[19]  Christian Hepp,et al.  All-optical formation of coherent dark states of silicon-vacancy spins in diamond. , 2014, Physical review letters.

[20]  J. van Slageren,et al.  Tuning of molecular qubits: very long coherence and spin-lattice relaxation times. , 2016, Chemical communications.

[21]  Andrew S. Dzurak,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[22]  R. Feynman Simulating physics with computers , 1999 .

[23]  K. Raymond,et al.  Dinuclear Catecholate Helicates: Their Inversion Mechanism , 1996 .

[24]  D. Suter,et al.  Experimental implementation of quantum gates through actuator qubits , 2014, 1405.7169.

[25]  K. Raymond,et al.  Rearrangement Reactions in Dinuclear Triple Helicates1 , 1997 .

[26]  D. Suter,et al.  Polarizing the electronic and nuclear spin of the NV-center in diamond in arbitrary magnetic fields: analysis of the optical pumping process , 2016, 1611.06771.

[27]  Marco Lanzagorta,et al.  Quantum Simulators , 2013 .

[28]  B. Kirste,et al.  Electron nuclear double resonance study of bis(acetylacetonato)oxovanadium(IV) and some of its adducts in frozen solution , 1982 .

[29]  M. Chiesa,et al.  Structural Effects on the Spin Dynamics of Potential Molecular Qubits. , 2018, Inorganic chemistry.

[30]  F Luis,et al.  Molecular prototypes for spin-based CNOT and SWAP quantum gates. , 2011, Physical review letters.

[31]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[32]  C J Wedge,et al.  Chemical engineering of molecular qubits. , 2012, Physical review letters.

[33]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[34]  Alessandro Chiesa,et al.  Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits , 2015, Scientific Reports.

[35]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[36]  Raymond Laflamme,et al.  Hyperfine spin qubits in irradiated malonic acid: heat-bath algorithmic cooling , 2014, Quantum Inf. Process..

[37]  J. Pilbrow,et al.  A new six-pulse two-dimensional electron spin echo envelope modulation (ESEEM) correlation spectroscopy , 1995 .

[38]  Alice M. Bowen,et al.  Engineering coherent interactions in molecular nanomagnet dimers , 2015 .

[39]  S. Stoll,et al.  5- and 6-pulse electron spin echo envelope modulation (ESEEM) of multi-nuclear spin systems. , 2008, Journal of magnetic resonance.

[40]  M. Wasielewski,et al.  Synthetic Approach To Determine the Effect of Nuclear Spin Distance on Electronic Spin Decoherence. , 2017, Journal of the American Chemical Society.

[41]  David G. Cory,et al.  Universal control of nuclear spins via anisotropic hyperfine interactions , 2007 .

[42]  M. Mehring,et al.  Entanglement between an electron and a nuclear spin 1/2. , 2002, Physical review letters.

[43]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[44]  F Troiani,et al.  Molecular nanomagnets as quantum simulators. , 2011, Physical review letters.

[45]  Andrew G. Glen,et al.  APPL , 2001 .

[46]  Masahiro Kitagawa,et al.  A synthetic two-spin quantum bit: g-engineered exchange-coupled biradical designed for controlled-NOT gate operations. , 2012, Angewandte Chemie.

[47]  Jonathan A. Jones Quantum computing with NMR. , 2010, Progress in nuclear magnetic resonance spectroscopy.

[48]  Raymond Laflamme,et al.  Coherent control of two nuclear spins using the anisotropic hyperfine interaction. , 2011, Physical review letters.

[49]  Michael Mehring,et al.  Spin-bus concept of spin quantum computing , 2006 .

[50]  A Ferhat,et al.  Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm. , 2017, Physical review letters.

[51]  M. Nakahara,et al.  Molecular electron-spin quantum computers and quantum information processing: pulse-based electron magnetic resonance spin technology applied to matter spin-qubits , 2009 .

[52]  Bastian Hacker,et al.  A photon–photon quantum gate based on a single atom in an optical resonator , 2016, Nature.

[53]  Fernando Luis,et al.  Heterodimetallic [LnLn′] Lanthanide Complexes: Toward a Chemical Design of Two-Qubit Molecular Spin Quantum Gates , 2014, Journal of the American Chemical Society.

[54]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[55]  R. D. Britt,et al.  51V ESE-ENDOR studies of oxovanadium(IV) complexes: Investigation of the nuclear quadrupole interaction , 1998 .

[56]  Joseph M. Zadrozny,et al.  Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit , 2015, ACS central science.

[57]  T. Takui,et al.  Adiabatic quantum computing with spin qubits hosted by molecules. , 2015, Physical chemistry chemical physics : PCCP.

[58]  F Troiani,et al.  Quantum information processing with hybrid spin-photon qubit encoding. , 2013, Physical review letters.