Parallel matrix factorization algorithm and its application to 5D seismic reconstruction and denoising

Tensors, alsocalledmultilinear arrays, havebeenreceiving attention from the seismic processing community. Tensors permit us to generalize processing methodologies to multidimensional structures that depend on more than 2D. Recent studies on seismic data reconstruction via tensor completion have led to new and interesting results. For instance, fully sampled noise-free multidimensional seismic data can be represented by a low-rank tensor. Missing traces and random noise increasethe rank ofthe tensor. Hence, multidimensional prestack seismic data denoising and reconstruction can be tackled with tools that have been studied in the field of tensor completion. We have investigated and applied the recently proposed parallel matrix factorization (PMF) method to solve the 5D seismic data reconstruction problem. We have evaluatedthe efficiency of thePMF methodincomparisonwithour previously reported algorithms that used singular value decomposition to solve the tensor completion problem for prestack seismic data. We examined the performance of PMF with synthetic data sets and with a field data set from a heavy oil survey in the Western Canadian Sedimentary Basin.

[1]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[2]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[3]  Lynn Burroughs,et al.  Rank-Reduction-Based Trace Interpolation , 2010 .

[4]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[5]  Felix J. Herrmann,et al.  Hierarchical Tucker Tensor Optimization - Applications to 4D Seismic Data Interpolation , 2013 .

[6]  Mauricio D. Sacchi,et al.  A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions , 2013 .

[7]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[8]  N. Kreimer,et al.  Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction , 2013 .

[9]  Daniel Trad,et al.  Five-dimensional interpolation: Recovering from acquisition constraints , 2009 .

[10]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[11]  A. K. Ozdemir,et al.  Interpolation of Irregularly Sampled Data by Matching Pursuit , 2008 .

[12]  Mauricio D. Sacchi,et al.  Minimum weighted norm wavefield reconstruction for AVA imaging , 2005 .

[13]  Ali Özbek,et al.  Crossline wavefield reconstruction from multicomponent streamer data: Part 1 — Multichannel interpolation by matching pursuit (MIMAP) using pressure and its crossline gradient , 2010 .

[14]  F. Guspí,et al.  A sparse spectrum technique for gridding and separating potential field anomalies , 2000 .

[15]  Jon F. Claerbout,et al.  Velocity-stack and slant-stack stochastic inversion , 1985 .

[16]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[17]  A. Gisolf,et al.  Fourier reconstruction with sparse inversion , 2007 .

[18]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2013, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Mauricio D. Sacchi,et al.  High‐resolution velocity gathers and offset space reconstruction , 1995 .

[20]  J. Claerbout,et al.  Hyperbolic estimation of sparse models from erratic data , 2012 .

[21]  Mauricio D. Sacchi,et al.  Interpolation and extrapolation using a high-resolution discrete Fourier transform , 1998, IEEE Trans. Signal Process..

[22]  Leslie Hogben,et al.  Handbook of Linear Algebra : Handbook of Linear Algebra , 2013 .

[23]  Sabine Van Huffel,et al.  Best Low Multilinear Rank Approximation of Higher-Order Tensors, Based on the Riemannian Trust-Region Scheme , 2011, SIAM J. Matrix Anal. Appl..

[24]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[25]  Yu Zhang,et al.  Antileakage Fourier transform for seismic data regularization in higher dimensions , 2010 .

[26]  D. Trad Five Dimensional Interpolation , 2008 .

[27]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[28]  Guochang Liu,et al.  Irregular seismic data reconstruction based on exponential threshold model of POCS method , 2010 .

[29]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[30]  Nadia Kreimer,et al.  A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation , 2012 .

[31]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[32]  R. Abma,et al.  3D interpolation of irregular data with a POCS algorithm , 2006 .

[33]  Felix J. Herrmann,et al.  Randomized sampling and sparsity: Getting more information from fewer samples , 2010 .

[34]  Felix J. Herrmann,et al.  Matrix Completion on Unstructured Grids - 2-D Seismic Data Regularization and Interpolation , 2015 .

[35]  Shuchin Aeron,et al.  5D and 4D pre-stack seismic data completion using tensor nuclear norm (TNN) , 2013, SEG Technical Program Expanded Abstracts 2013.

[36]  Mark Hadley,et al.  The effect of interpolation on imaging and AVO: A Viking case study , 2010 .

[37]  Gene H. Golub,et al.  Matrix computations , 1983 .

[38]  Nadia Kreimer,et al.  A Comparison of 5D Reconstruction Methods , 2012 .

[39]  A. Vigner,et al.  Seismic data regularization with the anti-alias anti-leakage Fourier transform , 2009 .

[40]  C. O. H. Hindriks,et al.  Reconstruction of band‐limited signals, irregularly sampled along one spatial direction , 1999 .

[41]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[42]  Yu Zhang,et al.  Antileakage Fourier transform for seismic data regularization , 2005 .

[43]  Mauricio D. Sacchi,et al.  Estimation of the discrete Fourier transform, a linear inversion approach , 1996 .

[44]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[45]  Stephen K. Chiu,et al.  Multidimensional interpolation using a model-constrained minimum weighted norm interpolation , 2014 .

[46]  Mauricio D. Sacchi,et al.  Minimum weighted norm interpolation of seismic records , 2004 .

[47]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[48]  R. Bro,et al.  PARAFAC and missing values , 2005 .

[49]  L. Hogben Handbook of Linear Algebra , 2006 .

[50]  Wotao Yin,et al.  Parallel matrix factorization for low-rank tensor completion , 2013, ArXiv.

[51]  H. L. Taylor,et al.  Deconvolution with the l 1 norm , 1979 .

[52]  L. Ongkiehong,et al.  A general reconstruction scheme for dominant azimuth 3D seismic data , 2003 .

[53]  T. Ulrych,et al.  A linear programming approach to the estimation of the power spectra of harmonic processes , 1982 .

[54]  Nadia Kreimer Multidimensional seismic data reconstruction using tensor analysis , 2013 .

[55]  Mauricio D. Sacchi,et al.  Convergence improvement and noise attenuation considerations for beyond alias projection onto convex sets reconstruction , 2013 .