Existence and stability of periodic solution of a predator-prey model with state-dependent impulsive effects
暂无分享,去创建一个
[1] Jörg Waldrogel,et al. The Period in the Volterra–Lotka Predator-Prey Model , 1983 .
[2] Guirong Jiang,et al. Impulsive state feedback control of a predator-prey model , 2007 .
[3] Snezhana Hristova,et al. Existence of periodic solutions of nonlinear systems of differential equations with impulse effect , 1987 .
[4] Guirong Jiang,et al. Complex dynamics of a Holling type II prey–predator system with state feedback control , 2007 .
[5] Zhidong Teng,et al. An SIRVS epidemic model with pulse vaccination strategy. , 2008, Journal of theoretical biology.
[6] J. C. van Lenteren,et al. Integrated pest management in protected crops. , 1995 .
[7] Katrin Rohlf,et al. Impulsive control of a Lotka-Volterra system , 1998 .
[8] Xinzhi Liu,et al. Permanence of population growth models with impulsive effects , 1997 .
[9] H. Barclay. Models for Pest Control Using Predator Release, Habitat Management and Pesticide Release in Combination , 1982 .
[10] P. S. Simeonov,et al. Orbital stability of periodic solutions of autonomous systems with impulse effect , 1988 .
[11] V. Lakshmikantham,et al. Theory of Impulsive Differential Equations , 1989, Series in Modern Applied Mathematics.
[12] Xinyu Song,et al. The prey-dependent consumption two-prey one-predator models with stage structure for the predator and impulsive effects. , 2006, Journal of theoretical biology.
[13] Sanyi Tang,et al. State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences , 2005, Journal of mathematical biology.
[14] Alberto d'Onofrio,et al. Stability properties of pulse vaccination strategy in SEIR epidemic model. , 2002, Mathematical biosciences.
[15] Sanyi Tang,et al. Integrated pest management models and their dynamical behaviour , 2005, Bulletin of mathematical biology.
[16] Zvia Agur,et al. Theoretical examination of the pulse vaccination policy in the SIR epidemic model , 2000 .
[17] Yongzhen Pei,et al. Extinction and permanence of one-prey multi-predators of Holling type II function response system with impulsive biological control. , 2005, Journal of theoretical biology.
[18] J. C. van Lenteren,et al. Environmental manipulation advantageous to natural enemies of pests. , 1987 .
[19] Gaston H. Gonnet,et al. On the LambertW function , 1996, Adv. Comput. Math..
[20] A. Samoilenko,et al. Impulsive differential equations , 1995 .
[21] Guangzhao Zeng,et al. Existence of periodic solution of order one of planar impulsive autonomous system , 2006 .
[22] X. Yao,et al. [Quantitative relationships between leaf total nitrogen concentration and canopy reflectance spectra of rice]. , 1982, Ying yong sheng tai xue bao = The journal of applied ecology.
[23] Xinzhi Liu. Stability results for impulsive differential systems with applications to population growth models , 1994 .
[24] Ivanka M. Stamova,et al. Asymptotic stability of competitive systems with delays and impulsive perturbations , 2007 .
[25] Yanni Xiao,et al. The dynamics of an eco-epidemic model with biological control , 2003 .
[26] Zhidong Teng,et al. Existence and stability of periodic solution of a Lotka-Volterra predator-prey model with state dependent impulsive effects , 2009 .
[27] R. Kannan. Existence of periodic solutions of nonlinear differential equations , 1976 .
[28] Mary Louise Flint. Integrated Pest Management for Walnuts , 1987 .
[29] Alberto d’Onofrio,et al. Pulse vaccination strategy in the sir epidemic model: Global asymptotic stable eradication in presence of vaccine failures , 2002 .