Dynamic Monte Carlo self-modeling curve resolution method for multicomponent mixtures

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  E. A. Sylvestre,et al.  Self Modeling Curve Resolution , 1971 .

[3]  N. Ohta,et al.  Estimating absorption bands of component dyes by means of principal component analysis , 1973 .

[4]  Gary D. Christian,et al.  Analysis of multicomponent fluorescence data , 1977 .

[5]  J. Futrell,et al.  Separation of mass spectra of mixtures by factor analysis , 1979 .

[6]  Harald Martens,et al.  Restricted Least Squares Estimation of the Spectra and Concentration of Two Unknown Constituents Available in Mixtures , 1982 .

[7]  S Kawata,et al.  Constrained nonlinear method for estimating component spectra from multicomponent mixtures. , 1983, Applied optics.

[8]  Lei Peng,et al.  Can , 1984 .

[9]  Paul J. Gemperline,et al.  A priori estimates of the elution profiles of the pure components in overlapped liquid chromatography peaks using target factor analysis , 1984, J. Chem. Inf. Comput. Sci..

[10]  Bruce R. Kowalski,et al.  An extension of the multivariate component-resolution method to three components , 1985 .

[11]  G. Kateman,et al.  Multicomponent self-modelling curve resolution in high-performance liquid chromatography by iterative target transformation analysis , 1985 .

[12]  M. Maeder,et al.  The resolution of overlapping chromatographic peaks by evolving factor analysis , 1986 .

[13]  Paul J. Gemperline,et al.  Target transformation factor analysis with linear inequality constraints applied to spectroscopic-chromatographic data , 1986 .

[14]  J. Hamilton,et al.  Mixture analysis using factor analysis. II: Self‐modeling curve resolution , 1990 .

[15]  R. Henry,et al.  Extension of self-modeling curve resolution to mixtures of more than three components: Part 1. Finding the basic feasible region , 1990 .

[16]  W. Windig,et al.  Interactive self-modeling mixture analysis , 1991 .

[17]  Edmund R. Malinowski,et al.  Window factor analysis: Theoretical derivation and application to flow injection analysis data , 1992 .

[18]  Yizeng Liang,et al.  Heuristic evolving latent projections: resolving two-way multicomponent data. 1. Selectivity, latent-projective graph, datascope, local rank, and unique resolution , 1992 .

[19]  J. Micheau,et al.  Reactivity of the Mn(III) and Mn(IV) Intermediates in the Permanganate/Oxalic Acid/Sulfuric Acid Reaction: Kinetic Determination of the Reducing Species , 1994 .

[20]  Sharon L. Neal,et al.  Direct distance measures in factor analysis spectral resolution , 1994 .

[21]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[22]  Darren T. Andrews,et al.  Maximum likelihood principal component analysis , 1997 .

[23]  Peter D. Wentzell,et al.  Direct optimization of self-modeling curve resolution: application to the kinetics of the permanganate - oxalic acid reaction , 1998 .

[24]  R. Henry,et al.  Extension of self-modeling curve resolution to mixtures of more than three components: Part 2. Finding the complete solution , 1999 .

[25]  P. Gemperline,et al.  Computation of the range of feasible solutions in self-modeling curve resolution algorithms. , 1999, Analytical chemistry.

[26]  P. Wentzell,et al.  Three-way analysis of fluorescence spectra of polycyclic aromatic hydrocarbons with quenching by nitromethane. , 2001, Analytical chemistry.

[27]  Andrew G. Glen,et al.  APPL , 2001 .