Intrinsic kinetics of plasmon-enhanced reverse water gas shift on Au and Au–Mo interfacial sites supported on silica

[1]  C. Carrero,et al.  Reverse Water-Gas Shift on Interfacial Sites Formed by Deposition of Oxidized Molybdenum Moieties onto Gold Nanoparticles. , 2015, Journal of the American Chemical Society.

[2]  James A. Dumesic,et al.  Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation , 2015 .

[3]  Aniruddha A. Upadhye,et al.  Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts , 2015 .

[4]  R. J. Behm,et al.  Reactive removal of surface oxygen by H2, CO and CO/H2 on a Au/CeO2 catalyst and its relevance to the preferential CO oxidation (PROX) and reverse water gas shift (RWGS) reaction , 2015 .

[5]  Sang Ho Lee,et al.  Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays. , 2014, ACS nano.

[6]  Xianzhi Fu,et al.  Comparative study of Au/TiO2 and Au/Al2O3 for oxidizing CO in the presence of H2 under visible light irradiation , 2014 .

[7]  A. Beck,et al.  Bimetallic Ag–Au/SiO2 catalysts: Formation, structure and synergistic activity in glucose oxidation , 2014 .

[8]  B. Hammer,et al.  Identification of the Catalytic Site at the Interface Perimeter of Au Clusters on Rutile TiO2(110) , 2014 .

[9]  M. Mavrikakis,et al.  Formic acid decomposition on Au catalysts: DFT, microkinetic modeling, and reaction kinetics experiments , 2014 .

[10]  Bjørk Hammer,et al.  Interfacial oxygen under TiO2 supported Au clusters revealed by a genetic algorithm search. , 2013, The Journal of chemical physics.

[11]  James P. Lewis,et al.  Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. , 2013, Nanoscale.

[12]  A. Corma,et al.  Photocatalytic water gas shift using visible or simulated solar light for the efficient, room-temperature hydrogen generation , 2013 .

[13]  R. Behm,et al.  TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst – A first step toward identifying a redox mechanism in the Reverse Water–Gas Shift reaction , 2013 .

[14]  Rationale for the higher reactivity of interfacial sites in methanol decomposition on Au13/TiO2(110). , 2013, Journal of the American Chemical Society.

[15]  Stefano Agnoli,et al.  Importance of the metal-oxide interface in catalysis: in situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. , 2013, Angewandte Chemie.

[16]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[17]  Haijun Zhang,et al.  Glucose oxidation using Au-containing bimetallic and trimetallic nanoparticles , 2013 .

[18]  Huaiyong Zhu,et al.  Selective reductions using visible light photocatalysts of supported gold nanoparticles , 2013 .

[19]  H. Xin,et al.  Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. , 2012, Nature materials.

[20]  Seung Min Kim,et al.  Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. , 2012, Journal of the American Chemical Society.

[21]  E. Thimsen,et al.  Plasmonic solar water splitting , 2012 .

[22]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[23]  Daniel Moses,et al.  Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. , 2011, Nano letters.

[24]  T. Fujitani,et al.  Mechanism and active sites of the oxidation of CO over Au/TiO2. , 2011, Angewandte Chemie.

[25]  Suljo Linic,et al.  Predictive Model for the Design of Plasmonic Metal/Semiconductor Composite Photocatalysts , 2011 .

[26]  T. Fujitani,et al.  Active Sites for Hydrogen Dissociation over TiOx/Au(111) Surfaces , 2011 .

[27]  T. Baumann,et al.  ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity. , 2011, Nano letters.

[28]  Prathamesh Pavaskar,et al.  Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions , 2011 .

[29]  Wei Wang,et al.  Recent advances in catalytic hydrogenation of carbon dioxide. , 2011, Chemical Society reviews.

[30]  S. Juodkazis,et al.  Resonant localization, enhancement, and polarization of optical fields in nano-scale interface regions for photo-catalytic applications. , 2011, Journal of nanoscience and nanotechnology.

[31]  Suljo Linic,et al.  Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. , 2011, Journal of the American Chemical Society.

[32]  Lei Wang,et al.  Plasmonics and enhanced magneto-optics in core-shell co-ag nanoparticles. , 2011, Nano letters.

[33]  S. Cronin,et al.  Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. , 2011, Nano letters.

[34]  Prathamesh Pavaskar,et al.  Plasmonic enhancement of photocatalytic decomposition of methyl orange under visible light , 2011 .

[35]  Din Ping Tsai,et al.  Plasmonic Photocatalyst for H2 Evolution in Photocatalytic Water Splitting , 2011 .

[36]  Seung Min Kim,et al.  Metallic corner atoms in gold clusters supported on rutile are the dominant active site during water-gas shift catalysis. , 2010, Journal of the American Chemical Society.

[37]  S. Linic,et al.  Enhancing Photochemical Activity of Semiconductor Nanoparticles with Optically Active Ag Nanostructures: Photochemistry Mediated by Ag Surface Plasmons , 2010 .

[38]  S. Cronin,et al.  Plasmon resonant enhancement of carbon monoxide catalysis. , 2010, Nano letters.

[39]  Younan Xia,et al.  Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth. , 2010, Journal of the American Chemical Society.

[40]  Zhen Ma,et al.  Performance of Au/MxOy/TiO2 Catalysts in Water-Gas Shift Reaction , 2010 .

[41]  H. Idriss,et al.  Gold particle size effects in the gas-phase hydrogenation of m-dinitrobenzene over Au/TiO2 , 2009 .

[42]  Isao Nakamura,et al.  Hydrogen dissociation by gold clusters. , 2009, Angewandte Chemie.

[43]  R. Behm,et al.  Reactive oxygen on a Au/TiO2 supported catalyst , 2009 .

[44]  Ping Liu,et al.  High Water−Gas Shift Activity in TiO2(110) Supported Cu and Au Nanoparticles: Role of the Oxide and Metal Particle Size , 2009 .

[45]  A. Corma,et al.  Active sites for H2 adsorption and activation in Au/TiO2 and the role of the support. , 2009, The journal of physical chemistry. A.

[46]  I. Wachs,et al.  In Situ Raman Spectroscopy of SiO2-Supported Transition Metal Oxide Catalysts: An Isotopic 18O−16O Exchange Study , 2008 .

[47]  B. Gates,et al.  Oxidation by CO2 of Au0 species on La2O3-supported gold clusters. , 2008, Chemical communications.

[48]  Israel E. Wachs,et al.  In Situ Spectroscopic Investigation of the Molecular and Electronic Structures of SiO2 Supported Surface Metal Oxides , 2007 .

[49]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[50]  B. Koel,et al.  CO adsorption and reaction on clean and oxygen-covered Au(211) surfaces. , 2006, The journal of physical chemistry. B.

[51]  N. Halas,et al.  Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance. , 2005, The journal of physical chemistry. B.

[52]  M. Vannice Kinetics of Catalytic Reactions , 2005 .

[53]  Jian Zhu Theoretical study of the optical absorption properties of Au–Ag bimetallic nanospheres , 2005 .

[54]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[55]  J. Wu,et al.  Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction , 2004 .

[56]  D. Meier,et al.  The influence of metal cluster size on adsorption energies: CO adsorbed on Au clusters supported on TiO2. , 2004, Journal of the American Chemical Society.

[57]  D. Meier,et al.  CO Adsorption on Au(110)−(1 × 2): An IRAS Investigation , 2003 .

[58]  M. Mavrikakis,et al.  Adsorption and Dissociation of O2 on Gold Surfaces: Effect of Steps and Strain , 2003 .

[59]  M. Bowker,et al.  Catalysis at the metal-support interface: exemplified by the photocatalytic reforming of methanol on Pd/TiO2 , 2003 .

[60]  W. Cai,et al.  Ultrasonic synthesis and optical properties of Au/Pd bimetallic nanoparticles in ethylene glycol , 2003 .

[61]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[62]  Mark E. Davis,et al.  Fundamentals of Chemical Reaction Engineering , 2002 .

[63]  I-Hsiang Tseng,et al.  Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts , 2002 .

[64]  R. P. Andres,et al.  Characterization of Gold–Titania Catalysts via Oxidation of Propylene to Propylene Oxide , 2000 .

[65]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[66]  J. Dumesic,et al.  Microcalorimetric, Infrared Spectroscopic, and DFT Studies of Ethylene Adsorption on Pt/SiO2 and Pt−Sn/SiO2 Catalysts , 1999 .

[67]  Toshio Hayashi,et al.  Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2Catalysts in the Presence of Oxygen and Hydrogen , 1998 .

[68]  P. Hollins,et al.  Adsorption of carbon monoxide on the gold(332) surface , 1996 .

[69]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[70]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[71]  A. Cybulski,et al.  Gas-particle heat transfer coefficients in packed beds at low Reynolds numbers , 1975 .

[72]  H. Tompkins,et al.  An infrared spectroscopic study of carbon monoxide adsorbed on polycrystalline gold using the reflection-absorption technique , 1972 .

[73]  D. Yates Spectroscopic investigations of gold surfaces , 1969 .

[74]  P. Weisz,et al.  Interpretation of Measurements in Experimental Catalysis , 1954 .