Humanoid Introspection: A Practical Approach

Abstract We describe an approach to robot introspection based on self observation and communication. Self observation is what the robot should do in order to build, represent and understand its internal state. It is necessary to translate the state representation in order to build a suitable input to an ontology that supplies the meaning of the internal state. The ontology supports the linguistic level that is used to communicate information about the robot state to the human user.

[1]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[2]  David A. Forsyth,et al.  Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary , 2002, ECCV.

[3]  Michael A. Goodrich,et al.  Human-Robot Interaction: A Survey , 2008, Found. Trends Hum. Comput. Interact..

[4]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[5]  Alex Pentland,et al.  Human computing and machine understanding of human behavior: a survey , 2006, ICMI '06.

[6]  Güven Güzeldere,et al.  Cognitive Architecture, Concepts, and Introspection: An Information-Theoretic Solution to the Problem of Phenomenal Consciousness , 2005 .

[7]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[8]  Zhihong Zeng,et al.  A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions , 2009, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Emilia I. Barakova,et al.  Mirror neuron framework yields representations for robot interaction , 2009, Neurocomputing.

[10]  Pat Langley,et al.  Cognitive architectures: Research issues and challenges , 2009, Cognitive Systems Research.

[11]  Richard L. Lewis,et al.  A computational unification of cognitive behavior and emotion , 2009, Cognitive Systems Research.

[12]  Salvatore Gaglio,et al.  A Framework for Sign Language Sentence Recognition by Commonsense Context , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[13]  Samuel Kaski,et al.  Self organization of a massive document collection , 2000, IEEE Trans. Neural Networks Learn. Syst..

[14]  Mircea Nicolescu,et al.  Understanding Activities and Intentions for Human-Robot Interaction , 2010 .

[15]  M. F. Porter,et al.  An algorithm for suffix stripping , 1997 .

[16]  Christian Keysers,et al.  The anthropomorphic brain: The mirror neuron system responds to human and robotic actions , 2007, NeuroImage.

[17]  Timo Honkela,et al.  WEBSOM - Self-organizing maps of document collections , 1998, Neurocomputing.

[18]  Francisco J. Serón,et al.  Affective Embodied Conversational Agents for Natural Interaction , 2008 .

[19]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[20]  G. Cheng,et al.  Social cognitive neuroscience and humanoid robotics , 2009, Journal of Physiology-Paris.

[21]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[22]  Samuel Kaski,et al.  Mining massive document collections by the WEBSOM method , 2004, Inf. Sci..

[23]  Chin-Hui Lee,et al.  Boosting of Maximal Figure of Merit Classifiers for Automatic Image Annotation , 2007, 2007 IEEE International Conference on Image Processing.

[24]  Mary-Anne Williams,et al.  The role of attention in robot self-awareness , 2009, RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication.

[25]  H. Ishiguro,et al.  The uncanny advantage of using androids in cognitive and social science research , 2006 .

[26]  Ignazio Infantino,et al.  Human-humanoid interaction by an intentional system , 2008, Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots.

[27]  Sigal G. Barsade The Ripple Effect: Emotional Contagion and its Influence on Group Behavior , 2002 .

[28]  Kostas Karpouzis,et al.  Emotion Modelling and Facial Affect Recognition in Human-Computer and Human-Robot Interaction , 2009 .

[29]  Monica N. Nicolescu,et al.  Understanding human intentions via Hidden Markov Models in autonomous mobile robots , 2008, 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[30]  J. Gregory Trafton,et al.  Enabling effective human-robot interaction using perspective-taking in robots , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[31]  G. Aschersleben,et al.  The Theory of Event Coding (TEC): a framework for perception and action planning. , 2001, The Behavioral and brain sciences.

[32]  Peter W. Foltz,et al.  An introduction to latent semantic analysis , 1998 .

[33]  Aaron Sloman,et al.  AN ALTERNATIVE TO WORKING ON MACHINE CONSCIOUSNESS , 2010 .

[34]  Chin-Hui Lee,et al.  Information fusion techniques for automatic image annotation , 2007, VISAPP.

[35]  Adriana Tapus,et al.  The crucial role of robot self-awareness in HRI , 2011, 2011 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[36]  Deb Roy,et al.  A Mechanistic Model of Three Facets of Meaning , 2007 .

[37]  John R Anderson,et al.  An integrated theory of the mind. , 2004, Psychological review.

[38]  Leonardo Fogassi,et al.  The mirror neuron system: How cognitive functions emerge from motor organization , 2010 .