Feature Selection Optimization

Reduction of feature dimensionality is a considerable importance data-driven PHM/CBM. The reason for being so is twofold: to reduce the computational complexity and to improve the algorithm’s generalization ability.

[1]  V. K. Jayaraman,et al.  An SVM classifier incorporating simultaneous noise reduction and feature selection: illustrative case examples , 2005, Pattern Recognit..

[2]  Tian Han,et al.  Fault diagnosis of rotating machinery based on multi-class support vector machines , 2005 .

[3]  Mineichi Kudo,et al.  Comparison of algorithms that select features for pattern classifiers , 2000, Pattern Recognit..

[4]  Slobodan Ribarić,et al.  Introduction to Pattern Recognition , 1988 .

[5]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Josef Kittler,et al.  Floating search methods for feature selection with nonmonotonic criterion functions , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[7]  Nils J. Nilsson,et al.  Problem-solving methods in artificial intelligence , 1971, McGraw-Hill computer science series.

[8]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[9]  Asoke K. Nandi,et al.  FAULT DETECTION USING SUPPORT VECTOR MACHINES AND ARTIFICIAL NEURAL NETWORKS, AUGMENTED BY GENETIC ALGORITHMS , 2002 .

[10]  D. E. Goldberg,et al.  Genetic Algorithm in Search , 1989 .

[11]  Tao Han,et al.  ART–KOHONEN neural network for fault diagnosis of rotating machinery , 2004 .

[12]  Christian Vandendorpe,et al.  Régimes du visuel et transformations de l'allégorie , 2006 .

[13]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[14]  David E. Goldberg,et al.  A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-Oriented Simulated Annealing , 1990, Complex Syst..

[15]  Solomon W. Golomb,et al.  Backtrack Programming , 1965, JACM.

[16]  Chong-Ho Choi,et al.  Input feature selection for classification problems , 2002, IEEE Trans. Neural Networks.

[17]  A. Rechester,et al.  Symbolic Analysis of Chaotic Signals and Turbulent Fluctuations , 1997 .

[18]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.