Optical super-resolution microscopy unravels the molecular composition of functional protein complexes.

Optical super-resolution microscopy has revolutionized our understanding of cell biology. Next to visualizing cellular structures with near-molecular spatial resolution, an additional benefit is the molecular characterization of biomolecular complexes directly in an intact cell. Single-molecule localization microscopy, as one technology out of the toolbox of super-resolution methods, generates images by detecting the position of single fluorophore labels and is particularly suited for molecular quantification. We review imaging and analysis methods employing single-molecule localization microscopy and extract molecule numbers.

[1]  Christian Soeller,et al.  3D super-resolution microscopy performance and quantitative analysis assessment using DNA-PAINT and DNA origami test samples , 2019, bioRxiv.

[2]  Tim N. Baldering,et al.  Molecule counts in complex oligomers with single-molecule localization microscopy , 2019, Journal of Physics D: Applied Physics.

[3]  K. Gaus,et al.  Stoichiometric quantification of spatially dense assemblies with qPAINT. , 2019, Nanoscale.

[4]  Maximilian T. Strauss,et al.  Super-resolution imaging and estimation of protein copy numbers at single synapses with DNA-point accumulation for imaging in nanoscale topography , 2019, Neurophotonics.

[5]  K. Gothelf,et al.  Aptamer-Directed Conjugation of DNA to Therapeutic Antibodies. , 2019, Bioconjugate chemistry.

[6]  C. Manzo,et al.  Quantifying Protein Copy Number in Super Resolution Using an Imaging-Invariant Calibration. , 2019, Biophysical journal.

[7]  C. Karathanasis,et al.  Single-molecule imaging and quantification of the immune-variant adhesin VAR2CSA on knobs of Plasmodium falciparum-infected erythrocytes , 2019, Communications Biology.

[8]  L. Kenney,et al.  Single cell, super-resolution imaging reveals an acid pH-dependent conformational switch in SsrB regulates SPI-2 , 2019, eLife.

[9]  R. Jungmann,et al.  Bacterially Derived Antibody Binders as Small Adapters for DNA‐PAINT Microscopy , 2019, Chembiochem : a European journal of chemical biology.

[10]  Tim N. Baldering,et al.  Synthetic and genetic dimers as quantification ruler for single-molecule counting with PALM , 2019, Molecular biology of the cell.

[11]  Maximilian T. Strauss,et al.  Direct Visualization of Single Nuclear Pore Complex Proteins Using Genetically‐Encoded Probes for DNA‐PAINT , 2019, bioRxiv.

[12]  M. Trepel,et al.  Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane , 2019, Nature Communications.

[13]  M. Heilemann,et al.  Whole-Cell, 3D, and Multicolor STED Imaging with Exchangeable Fluorophores. , 2018, Nano letters.

[14]  P. Schwille,et al.  Photo-Induced Depletion of Binding Sites in DNA-PAINT Microscopy , 2018, Molecules.

[15]  Victor A Kenyon,et al.  A Platform To Enhance Quantitative Single Molecule Localization Microscopy , 2018, Journal of the American Chemical Society.

[16]  K. S. Gruβmayer,et al.  Photons in - numbers out: perspectives in quantitative fluorescence microscopy for in situ protein counting , 2018, Methods and applications in fluorescence.

[17]  Xiaowei Zhuang,et al.  Visualizing and discovering cellular structures with super-resolution microscopy , 2018, Science.

[18]  Maximilian T. Strauss,et al.  Modified aptamers enable quantitative sub-10-nm cellular DNA-PAINT imaging , 2018, Nature Methods.

[19]  Maximilian T. Strauss,et al.  Site-Specific Labeling of Affimers for DNA-PAINT Microscopy. , 2018, Angewandte Chemie.

[20]  Mark Bates,et al.  A toolbox of anti–mouse and anti–rabbit IgG secondary nanobodies , 2018, The Journal of cell biology.

[21]  Isuru D. Jayasinghe,et al.  True Molecular Scale Visualization of Variable Clustering Properties of Ryanodine Receptors , 2018, Cell reports.

[22]  Mike Heilemann,et al.  Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization , 2017, Science Signaling.

[23]  Edward S Boyden,et al.  Rapid Sequential in Situ Multiplexing With DNA-Exchange-Imaging , 2017, bioRxiv.

[24]  Christopher J. Obara,et al.  Rational Engineering of Photoconvertible Fluorescent Proteins for Dual-Color Fluorescence Nanoscopy Enabled by a Triplet-State Mechanism of Primed Conversion. , 2017, Angewandte Chemie.

[25]  Alexander Balinovic,et al.  Combining Primed Photoconversion and UV-Photoactivation for Aberration-Free, Live-Cell Compliant Multi-Color Single-Molecule Localization Microscopy Imaging , 2017, International journal of molecular sciences.

[26]  Melike Lakadamyali,et al.  DNA Origami offers a versatile method for quantifying protein copy-number in super-resolution , 2017, Nature Methods.

[27]  Maximilian T. Strauss,et al.  Super-resolution microscopy with DNA-PAINT , 2017, Nature Protocols.

[28]  Gerhard Hummer,et al.  Molecule Counts in Localization Microscopy with Organic Fluorophores. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  M. Heilemann,et al.  Single-Molecule Localization Microscopy in Eukaryotes. , 2017, Chemical reviews.

[30]  Katharina Gaus,et al.  Turning single-molecule localization microscopy into a quantitative bioanalytical tool , 2017, Nature Protocols.

[31]  T. Kuner,et al.  Temporal accumulation analysis provides simplified artifact-free analysis of membrane-protein nanoclusters , 2016, Nature Methods.

[32]  J. Elf,et al.  Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes , 2016, Science.

[33]  G. Hummer,et al.  Model-independent counting of molecules in single-molecule localization microscopy , 2016, Molecular biology of the cell.

[34]  Gerhard J Schütz,et al.  Varying label density allows artifact-free analysis of membrane-protein nanoclusters , 2016, Nature Methods.

[35]  Johannes B. Woehrstein,et al.  Quantitative Super-Resolution Imaging with qPAINT using Transient Binding Analysis , 2016, Nature Methods.

[36]  J. Michiels,et al.  A study of SeqA subcellular localization in Escherichia coli using photo-activated localization microscopy. , 2015, Faraday discussions.

[37]  H. Ewers,et al.  Single-molecule microscopy of molecules tagged with GFP or RFP derivatives in mammalian cells using nanobody binders. , 2015, Methods.

[38]  M. Heilemann,et al.  Single cell super-resolution imaging of E. coli OmpR during environmental stress. , 2015, Integrative biology : quantitative biosciences from nano to macro.

[39]  M. Heilemann,et al.  A set of homo-oligomeric standards allows accurate protein counting. , 2015, Angewandte Chemie.

[40]  Roland Eils,et al.  One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy , 2015, Scientific Reports.

[41]  R. Tampé,et al.  SLAP: Small Labeling Pair for Single-Molecule Super-Resolution Imaging. , 2015, Angewandte Chemie.

[42]  Takeharu Nagai,et al.  A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. , 2015, Microscopy.

[43]  M. Sauer,et al.  Artifacts in single-molecule localization microscopy , 2015, Histochemistry and Cell Biology.

[44]  Steve Pressé,et al.  Stochastic approach to the molecular counting problem in superresolution microscopy , 2014, Proceedings of the National Academy of Sciences.

[45]  Georg Krohne,et al.  Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution , 2014, Journal of Cell Science.

[46]  Thomas Tørring,et al.  Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins. , 2014, Nature chemistry.

[47]  Uri Ashery,et al.  Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states , 2014, Nature Communications.

[48]  S. Hess,et al.  In cellulo Evaluation of Phototransformation Quantum Yields in Fluorescent Proteins Used As Markers for Single-Molecule Localization Microscopy , 2014, PloS one.

[49]  Prabuddha Sengupta,et al.  Photocontrollable fluorescent proteins for superresolution imaging. , 2014, Annual review of biophysics.

[50]  M. Heilemann,et al.  Receptor-ligand interactions: binding affinities studied by single-molecule and super-resolution microscopy on intact cells. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[51]  Mike Heilemann,et al.  Art and artifacts in single-molecule localization microscopy: beyond attractive images , 2014, Nature Methods.

[52]  Carsten Schultz,et al.  Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. , 2014, Angewandte Chemie.

[53]  Sebastian van de Linde,et al.  How to switch a fluorophore: from undesired blinking to controlled photoswitching. , 2014, Chemical Society reviews.

[54]  M. Lakadamyali,et al.  Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate , 2014, Nature Methods.

[55]  Joe W. Gray,et al.  Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling , 2013, Proceedings of the National Academy of Sciences.

[56]  Wendell A. Lim,et al.  Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory , 2013, Proceedings of the National Academy of Sciences.

[57]  Mike Heilemann,et al.  Single-molecule localization microscopy-near-molecular spatial resolution in light microscopy with photoswitchable fluorophores. , 2013, Physical chemistry chemical physics : PCCP.

[58]  Ignacio Izeddin,et al.  Real-Time Dynamics of RNA Polymerase II Clustering in Live Human Cells , 2013, Science.

[59]  U. Endesfelder,et al.  Multiscale spatial organization of RNA polymerase in Escherichia coli. , 2013, Biophysical journal.

[60]  Prabuddha Sengupta,et al.  Quantifying spatial organization in point-localization superresolution images using pair correlation analysis , 2013, Nature Protocols.

[61]  C. Bustamante,et al.  Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM) , 2012, Proceedings of the National Academy of Sciences.

[62]  Paul D. Dunne,et al.  Quantitative single-molecule microscopy reveals that CENP-ACnp1 deposition occurs during G2 in fission yeast , 2012, Open Biology.

[63]  P. Sengupta,et al.  Quantitative nanoscale analysis of IgE-FcεRI clustering and coupling to early signaling proteins. , 2012, The journal of physical chemistry. B.

[64]  Prabuddha Sengupta,et al.  Quantitative analysis of photoactivated localization microscopy (PALM) datasets using pair‐correlation analysis , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[65]  H. Ewers,et al.  A simple, versatile method for GFP-based super-resolution microscopy via nanobodies , 2012, Nature Methods.

[66]  Suliana Manley,et al.  Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. , 2011, Immunity.

[67]  Prabuddha Sengupta,et al.  Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis , 2011, Nature Methods.

[68]  P. Annibale,et al.  Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking , 2011, PloS one.

[69]  Benjamin B. Machta,et al.  Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting , 2011, PloS one.

[70]  Peter J. Verveer,et al.  Chemically Induced Photoswitching of Fluorescent Probes—A General Concept for Super-Resolution Microscopy , 2011, Molecules.

[71]  F. Simmel,et al.  Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. , 2010, Nano letters.

[72]  P. Annibale,et al.  Photoactivatable Fluorescent Protein mEos2 Displays Repeated Photoactivation after a Long-Lived Dark State in the Red Photoconverted Form , 2010 .

[73]  Suliana Manley,et al.  Photoactivatable mCherry for high-resolution two-color fluorescence microscopy , 2009, Nature Methods.

[74]  Kristin L. Hazelwood,et al.  A bright and photostable photoconvertible fluorescent protein for fusion tags , 2009, Nature Methods.

[75]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[76]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[77]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[78]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[79]  R. Tsien,et al.  On/off blinking and switching behaviour of single molecules of green fluorescent protein , 1997, Nature.

[80]  R. Eils,et al.  Quantitative Single-Molecule Localization Microscopy (qSMLM) of Membrane Proteins Based on Kinetic Analysis of Fluorophore Blinking Cycles. , 2017, Methods in molecular biology.

[81]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.