Minimal model for genome evolution and growth.

Textual analysis of typical microbial genomes reveals that they have the statistical characteristics of a DNA sequence of a much shorter length. This peculiar property supports an evolutionary model in which a genome evolves by random mutation but primarily grows by random segmental duplication. That genomes grew mostly by duplication is consistent with the observation that repeat sequences in all genomes are widespread and intragenomic and intergenomic homologous genes are preponderant across all life forms.

[1]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[2]  S. Salzberg,et al.  DNA uptake signal sequences in naturally transformable bacteria. , 1999, Research in microbiology.

[3]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[4]  F. Ji,et al.  Fuzzy classification of nucleotide sequences and bacterial evolution. , 1995, Bulletin of mathematical biology.

[5]  S. Karlin,et al.  Frequent oligonucleotides and peptides of the Haemophilus influenzae genome. , 1996, Nucleic acids research.

[6]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[7]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[8]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[9]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[10]  S. Gould,et al.  Punctuated equilibria: the tempo and mode of evolution reconsidered , 1977, Paleobiology.

[11]  T. Colbert,et al.  Genomics, Chi sites and codons: 'islands of preferred DNA pairing' are oceans of ORFs. , 1998, Trends in genetics : TIG.

[12]  S. Karlin,et al.  Dinucleotide relative abundance extremes: a genomic signature. , 1995, Trends in genetics : TIG.

[13]  Liam Kemp,et al.  This wonderful life , 2003, SVR '03.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[16]  K. H. Wolfe,et al.  Eukaryote genome duplication - where's the evidence? , 1998, Current opinion in genetics & development.

[17]  C. Woese The universal ancestor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[19]  S. Karlin,et al.  Over- and under-representation of short oligonucleotides in DNA sequences. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Clive Richards,et al.  The Blind Watchmaker , 1987, Bristol Medico-Chirurgical Journal.

[21]  S Karlin,et al.  Statistical analyses of counts and distributions of restriction sites in DNA sequences. , 1992, Nucleic acids research.

[22]  Alain F. Corcos,et al.  The Evolution of Genetics , 1965 .

[23]  R. Fleischmann,et al.  Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. , 1995, Science.

[24]  A. Rowell,et al.  Models in Paleobiology , 1973 .

[25]  W R Engels,et al.  Gene duplication. , 1981, Science.

[26]  S. Otto,et al.  The evolution of gene duplicates. , 2002, Advances in genetics.

[27]  D. Labie,et al.  Molecular Evolution , 1991, Nature.