Genome-wide essential gene identification in Streptococcus sanguinis

A clear perception of gene essentiality in bacterial pathogens is pivotal for identifying drug targets to combat emergence of new pathogens and antibiotic-resistant bacteria, for synthetic biology, and for understanding the origins of life. We have constructed a comprehensive set of deletion mutants and systematically identified a clearly defined set of essential genes for Streptococcus sanguinis. Our results were confirmed by growing S. sanguinis in minimal medium and by double-knockout of paralogous or isozyme genes. Careful examination revealed that these essential genes were associated with only three basic categories of biological functions: maintenance of the cell envelope, energy production, and processing of genetic information. Our finding was subsequently validated in two other pathogenic streptococcal species, Streptococcus pneumoniae and Streptococcus mutans and in two other gram-positive pathogens, Bacillus subtilis and Staphylococcus aureus. Our analysis has thus led to a simplified model that permits reliable prediction of gene essentiality.

[1]  Martin Rosenberg,et al.  Identification of Critical Staphylococcal Genes Using Conditional Phenotypes Generated by Antisense RNA , 2001, Science.

[2]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[3]  Gregory A. Buck,et al.  The genome of Cryptosporidium hominis , 2004, Nature.

[4]  Mark D'Souza,et al.  From Genetic Footprinting to Antimicrobial Drug Targets: Examples in Cofactor Biosynthetic Pathways , 2002, Journal of bacteriology.

[5]  Yan Lin,et al.  DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes , 2008, Nucleic Acids Res..

[6]  J. Mekalanos,et al.  A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Ben-Yang Liao,et al.  Impacts of gene essentiality, expression pattern, and gene compactness on the evolutionary rate of mammalian proteins. , 2006, Molecular biology and evolution.

[8]  Eric Haugen,et al.  Comprehensive transposon mutant library of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Roy R Chaudhuri,et al.  Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH) , 2009, BMC Genomics.

[10]  Frederick M Ausubel,et al.  Correction for Liberati et al., An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants , 2006, Proceedings of the National Academy of Sciences.

[11]  Stanley Falkow,et al.  Global Transposon Mutagenesis and Essential Gene Analysis of Helicobacter pylori , 2004, Journal of bacteriology.

[12]  M. Nahm,et al.  A New Model of Pneumococcal Lipoteichoic Acid Structure Resolves Biochemical, Biosynthetic, and Serologic Inconsistencies of the Current Model , 2008, Journal of bacteriology.

[13]  Howard Xu,et al.  A genome‐wide strategy for the identification of essential genes in Staphylococcus aureus , 2002, Molecular microbiology.

[14]  A. Bozio,et al.  Current patterns of infective endocarditis in congenital heart disease , 2006, Heart.

[15]  P. Kolenbrander,et al.  Adhere today, here tomorrow: oral bacterial adherence , 1993, Journal of bacteriology.

[16]  W. Fischer,et al.  Isomalto-oligosaccharide-containing lipoteichoic acid of Streptococcus sanguis. Microheterogeneity and distribution of chain substituents. , 1993, European journal of biochemistry.

[17]  E. Koonin,et al.  Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. , 2002, Genome research.

[18]  J. W. Campbell,et al.  Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655 , 2003, Journal of bacteriology.

[19]  Vincent Schächter,et al.  A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1 , 2008, Molecular systems biology.

[20]  R. Kaul,et al.  A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate , 2007, Proceedings of the National Academy of Sciences.

[21]  P. Trieu-Cuot,et al.  Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3'5"-aminoglycoside phosphotransferase type III. , 1983, Gene.

[22]  Eugene V. Koonin,et al.  Comparative genomics, minimal gene-sets and the last universal common ancestor , 2003, Nature Reviews Microbiology.

[23]  M. Kilian,et al.  Ecology and nature of immunoglobulin A1 protease-producing streptococci in the human oral cavity and pharynx , 1981, Infection and immunity.

[24]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Jae-Hoon Song,et al.  Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. , 2005, Molecules and cells.

[26]  B. Dougherty,et al.  Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. , 2002, Nucleic acids research.

[27]  C. Munro,et al.  Identification of Virulence Determinants for Endocarditis in Streptococcus sanguinis by Signature-Tagged Mutagenesis , 2005, Infection and Immunity.

[28]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[29]  Michael R. Seringhaus,et al.  Predicting essential genes in fungal genomes. , 2006, Genome research.

[30]  B. Anton,et al.  Transposon-Mediated Linker Insertion Scanning Mutagenesis of the Escherichia coli McrA Endonuclease , 2004, Journal of bacteriology.

[31]  Xiuchun Ge,et al.  Identification of Streptococcus sanguinis Genes Required for Biofilm Formation and Examination of Their Role in Endocarditis Virulence , 2008, Infection and Immunity.

[32]  A. Camilli,et al.  Transformation of a type 4 encapsulated strain of Streptococcus pneumoniae. , 1999, FEMS microbiology letters.

[33]  C. Munro,et al.  Development of genetic tools for in vivo virulence analysis of Streptococcus sanguinis. , 2009, Microbiology.

[34]  Steffen Heber,et al.  In silico prediction of yeast deletion phenotypes. , 2006, Genetics and molecular research : GMR.

[35]  P. Trieu-Cuot,et al.  DNA sequences specifying the transcription of the streptococcal kanamycin resistance gene in Escherichia coli and Bacillus subtilis , 2004, Molecular and General Genetics MGG.

[36]  T. Fuchs,et al.  Large‐scale identification of essential Salmonella genes by trapping lethal insertions , 2004, Molecular microbiology.

[37]  J. Musser,et al.  Nonpolar Inactivation of the Hypervariable Streptococcal Inhibitor of Complement Gene (sic) in Serotype M1 Streptococcus pyogenes Significantly Decreases Mouse Mucosal Colonization , 2000, Infection and Immunity.

[38]  Gregory A. Buck,et al.  Genome of the Opportunistic Pathogen Streptococcus sanguinis , 2007, Journal of bacteriology.

[39]  George M Church,et al.  Towards synthesis of a minimal cell , 2006, Molecular systems biology.

[40]  Ali A. Minai,et al.  Investigating the predictability of essential genes across distantly related organisms using an integrative approach , 2010, Nucleic acids research.

[41]  Michael Knop,et al.  Evolution of Mutational Robustness in the Yeast Genome: A Link to Essential Genes and Meiotic Recombination Hotspots , 2009, PLoS genetics.

[42]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[43]  D. Platt,et al.  Lipoteichoic Acids from Streptococcus sanguis , 1974, Journal of bacteriology.

[44]  R. Baggott DISEASE , 1947, Social Policy & Administration.

[45]  E. Rubin,et al.  Genes required for mycobacterial growth defined by high density mutagenesis , 2003, Molecular microbiology.

[46]  C. Hutchison,et al.  Essential genes of a minimal bacterium. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Ann E Loraine,et al.  Large‐scale transposon mutagenesis of Mycoplasma pulmonis , 2008, Molecular microbiology.