An adaptive stochastic Galerkin method for random elliptic operators
暂无分享,去创建一个
[1] I. Babuska,et al. Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .
[2] Massimo Fornasier,et al. Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..
[3] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[4] Rob P. Stevenson,et al. Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..
[5] Christoph Schwab,et al. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .
[6] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[7] M. Fornasier,et al. Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .
[8] Rob P. Stevenson,et al. An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..
[9] C. Schwab,et al. Sparse high order FEM for elliptic sPDEs , 2009 .
[10] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[11] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[12] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[13] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[14] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[15] P. Frauenfelder,et al. Finite elements for elliptic problems with stochastic coefficients , 2005 .
[16] Rob Stevenson,et al. An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .
[17] Christoph Schwab,et al. Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..
[18] Hermann G. Matthies,et al. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .
[19] Claude Jeffrey Gittelson,et al. Stochastic Galerkin approximation of operator equations with infinite dimensional noise , 2011 .
[20] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[21] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[22] Arend Aalberthus Roeland Metselaar. Handling Wavelet Expansions in numerical Methods , 2002 .
[23] Hans-Joachim Kowalsky. De Gruyter Lehrbuch , 1974 .
[24] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[25] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[26] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[27] R. DeVore,et al. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .
[28] Raúl Tempone,et al. Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..