Silver activation on thin films of Ag-ZrCN coatings for antimicrobial activity.

[1]  E. Pavlidou,et al.  Growth and annealing strategies to control the microstructure of AlN:Ag nanocomposite films for plasmonic applications , 2014 .

[2]  S. Carvalho,et al.  Study of the effect of the silver content on the structural and mechanical behavior of Ag-ZrCN coatings for orthopedic prostheses. , 2014, Materials science & engineering. C, Materials for biological applications.

[3]  S. Carvalho,et al.  Structural and electrochemical characterization of Zr–C–N–Ag coatings deposited by DC dual magnetron sputtering , 2014 .

[4]  L. Visai,et al.  Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. , 2014, Biomaterials.

[5]  C. Palacio,et al.  Ag+ release inhibition from ZrCN–Ag coatings by surface agglomeration mechanism: structural characterization , 2013 .

[6]  S. Carvalho,et al.  Ag+ release and corrosion behavior of zirconium carbonitride coatings with silver nanoparticles for biomedical devices , 2013 .

[7]  N. Vukovic,et al.  Potentiostatic oxidation of AgCu50 alloy in alkaline solution in the presence of chlorides , 2013 .

[8]  S. Carvalho,et al.  Influence of surface features on the adhesion of Staphylococcus epidermidis to Ag–TiCN thin films , 2013, Science and technology of advanced materials.

[9]  R. Oldinski,et al.  Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium , 2012 .

[10]  J. Zagal,et al.  Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles , 2012 .

[11]  Carla Renata Arciola,et al.  Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. , 2012, Biomaterials.

[12]  A. Bandyopadhyay,et al.  Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating. , 2012, ACS applied materials & interfaces.

[13]  S. Carvalho,et al.  Influence of silver content on the tribomechanical behavior on Ag-TiCN bioactive coatings , 2012 .

[14]  Heng-Li Huang,et al.  Characterization and antibacterial performance of ZrCN/amorphous carbon coatings deposited on titanium implants , 2011 .

[15]  J. Santamaría,et al.  Bactericidal effects of different silver-containing materials , 2011 .

[16]  Guang-qiang Zhao,et al.  In Vitro Model of Bacterial Biofilm Formation on Polyvinyl Chloride Biomaterial , 2011, Cell Biochemistry and Biophysics.

[17]  Leo H. Koole,et al.  New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles , 2011 .

[18]  C. Mitterer,et al.  Structure-property relations in ZrCN coatings for tribological applications , 2010 .

[19]  André Anders,et al.  Antibacterial efficacy of advanced silver-amorphous carbon coatings deposited using the pulsed dual cathodic arc technique , 2010 .

[20]  Lin Zheng,et al.  Chemical assembly of silver nanoparticles on stainless steel for antimicrobial applications , 2010 .

[21]  Xiaoying Li,et al.  Zirconium carbonitride films deposited by combined magnetron sputtering and ion implantation (CMSII) , 2010 .

[22]  V. Braic,et al.  Characterization of Zr-based hard coatings for medical implant applications , 2010 .

[23]  T. Tolker-Nielsen,et al.  Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance , 2010 .

[24]  K. Whitehead,et al.  A study of the antimicrobial and tribological properties of TiN/Ag nanocomposite coatings , 2009 .

[25]  A. P. Serro,et al.  A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications , 2009 .

[26]  J. Alexander,et al.  History of the medical use of silver. , 2009, Surgical infections.

[27]  S. Carvalho,et al.  Structural evolution of Ti–Al–Si–N nanocomposite coatings , 2009 .

[28]  B. Almeida,et al.  XRD and FTIR analysis of Ti-Si-C-ON coatings for biomedical applications , 2008 .

[29]  Fanhao Meng,et al.  Preparation and antibacterial effect of plasma sprayed wollastonite coatings loading silver , 2008 .

[30]  Ju-liang He,et al.  Antimicrobial efficacy of photocatalytic TiO2 coatings prepared by arc ion plating , 2007 .

[31]  P. Tam,et al.  Silver nanoparticles: partial oxidation and antibacterial activities , 2007, JBIC Journal of Biological Inorganic Chemistry.

[32]  Mark H Schoenfisch,et al.  Reducing implant-related infections: active release strategies. , 2006, Chemical Society reviews.

[33]  Ayusman Sen,et al.  Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. , 2006, Journal of the American Chemical Society.

[34]  J. Zhao,et al.  Bactericidal properties of silver implanted pyrolytic carbon , 2006 .

[35]  D. Gall,et al.  CrN-Ag self-lubricating hard coatings , 2005 .

[36]  W. Kao,et al.  Wear behavior of DC unbalanced magnetron sputter deposited ZrCN films , 2005 .

[37]  M. Braic,et al.  Properties of arc plasma deposited TiCN/ZrCN superlattice coatings , 2005 .

[38]  M. Yacamán,et al.  The bactericidal effect of silver nanoparticles , 2005, Nanotechnology.

[39]  G. Pier,et al.  Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. , 2005, Research in microbiology.

[40]  Helmut Münstedt,et al.  Silver ion release from antimicrobial polyamide/silver composites. , 2005, Biomaterials.

[41]  Zilong Tang,et al.  Differences between Zirconium Hydroxide (Zr(OH)4·nH2O) and Hydrous Zirconia (ZrO2·nH2O) , 2004 .

[42]  M. Schoenfisch,et al.  Nitric oxide-releasing sol-gels as antibacterial coatings for orthopedic implants. , 2004, Biomaterials.

[43]  J. Schrenzel,et al.  Trends in the treatment of orthopaedic prosthetic infections. , 2004, The Journal of antimicrobial chemotherapy.

[44]  A. B. Russell,et al.  An experimental study of an NaClO generator for anti-microbial applications in the food industry , 2002 .

[45]  D. Grainger,et al.  Prophylactic treatment of gram-positive and gram-negative abdominal implant infections using locally delivered polyclonal antibodies. , 2002, Journal of biomedical materials research.

[46]  P. Louda,et al.  Investigation of low-reflective ZrCN–PVD-arc coatings for application on medical tools for minimally invasive surgery , 2001 .

[47]  F. Cui,et al.  A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. , 2000, Journal of biomedical materials research.

[48]  H J Klasen,et al.  Historical review of the use of silver in the treatment of burns. I. Early uses. , 2000, Burns : journal of the International Society for Burn Injuries.

[49]  Gabriela C. Weaver,et al.  Chemistry and Chemical Reactivity , 1999 .

[50]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[51]  D. Hecht,et al.  XPS investigations of the electrochemical double layer on silver in alkaline chloride solutions , 1997 .

[52]  C. Palacio,et al.  Carbon nitride thin films formation by N2+ ion implantation , 1997 .

[53]  S. Hammer,et al.  Staphylococcus epidermidis infections. , 1983, Annals of internal medicine.

[54]  T. Pradeep,et al.  Atomically precise silver clusters for efficient chlorocarbon degradation , 2013 .

[55]  A. Kurek,et al.  New antibacterial therapeutics and strategies. , 2011, Polish journal of microbiology.

[56]  W. Winkelmann,et al.  Lack of toxicological side-effects in silver-coated megaprostheses in humans. , 2007, Biomaterials.

[57]  A D Russell,et al.  Antimicrobial activity and action of silver. , 1994, Progress in medicinal chemistry.