Feature-Based Attentional Modulations in the Absence of Direct Visual Stimulation

[1]  Paul E. Downing,et al.  Using multi-voxel pattern analysis of fMRI data to interpret overlapping functional activations , 2007, Trends in Cognitive Sciences.

[2]  Wim Vanduffel,et al.  The Radial Bias: A Different Slant on Visual Orientation Sensitivity in Human and Nonhuman Primates , 2006, Neuron.

[3]  David J. Freedman,et al.  Experience-dependent representation of visual categories in parietal cortex , 2006, Nature.

[4]  G. Boynton,et al.  Effects of feature-based attention on the motion aftereffect at remote locations , 2006, Vision Research.

[5]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[6]  J. Maunsell,et al.  Effects of spatial attention on contrast response functions in macaque area V4. , 2006, Journal of neurophysiology.

[7]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[8]  F. Tong,et al.  Decoding Seen and Attended Motion Directions from Activity in the Human Visual Cortex , 2006, Current Biology.

[9]  S. Yantis,et al.  Selective visual attention and perceptual coherence , 2006, Trends in Cognitive Sciences.

[10]  S. Kosslyn,et al.  Visual mental imagery induces retinotopically organized activation of early visual areas. , 2005, Cerebral cortex.

[11]  J. Gallant,et al.  Time Course of Attention Reveals Different Mechanisms for Spatial and Feature-Based Attention in Area V4 , 2005, Neuron.

[12]  G. Boynton Attention and visual perception , 2005, Current Opinion in Neurobiology.

[13]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[14]  D. Melcher,et al.  Implicit Attentional Selection of Bound Visual Features , 2005, Neuron.

[15]  Scott A. Beardsley,et al.  Psychophysical evidence for a radial motion bias in complex motion discrimination , 2005, Vision Research.

[16]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[17]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[18]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[19]  Andrew B. Leber,et al.  Coordination of Voluntary and Stimulus-Driven Attentional Control in Human Cortex , 2005, Psychological science.

[20]  Tom M. Mitchell,et al.  Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.

[21]  D. Somers,et al.  Multiple Spotlights of Attentional Selection in Human Visual Cortex , 2004, Neuron.

[22]  S. Treue,et al.  Feature-Based Attention Increases the Selectivity of Population Responses in Primate Visual Cortex , 2004, Current Biology.

[23]  P. H. Schiller,et al.  State dependent activity in monkey visual cortex , 2004, Experimental Brain Research.

[24]  Guy A. Orban,et al.  Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI , 2003, Neuropsychologia.

[25]  S. Yantis,et al.  Cortical mechanisms of feature-based attentional control. , 2003, Cerebral cortex.

[26]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[27]  G. Boynton,et al.  Global feature-based attention for motion and color , 2003, Vision Research.

[28]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[29]  G. Boynton,et al.  Global effects of feature-based attention in human visual cortex , 2002, Nature Neuroscience.

[30]  Andrew B. Leber,et al.  Made you blink! Contingent attentional capture produces a spatial blink , 2002, Perception & psychophysics.

[31]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[32]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[33]  S. Ben Hamed,et al.  Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis , 2001, Experimental Brain Research.

[34]  O. Braddick,et al.  Brain Areas Sensitive to Coherent Visual Motion , 2001, Perception.

[35]  D. Heeger,et al.  Activity in primary visual cortex predicts performance in a visual detection task , 2000, Nature Neuroscience.

[36]  H. Pashler,et al.  Evidence for split attentional foci. , 2000, Journal of experimental psychology. Human perception and performance.

[37]  M. Corbetta,et al.  Areas Involved in Encoding and Applying Directional Expectations to Moving Objects , 1999, The Journal of Neuroscience.

[38]  Karl J. Friston,et al.  The physiological basis of attentional modulation in extrastriate visual areas , 1999, Nature Neuroscience.

[39]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[40]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[41]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A M Dale,et al.  Optimal experimental design for event‐related fMRI , 1999, Human brain mapping.

[43]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[44]  M. Livingstone,et al.  Neuronal correlates of visibility and invisibility in the primate visual system , 1998, Nature Neuroscience.

[45]  A. Dale,et al.  The representation of the ipsilateral visual field in human cerebral cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  P. Bex,et al.  Radial motion looks faster , 1997, Vision Research.

[47]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[48]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[49]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[50]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[51]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[52]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[53]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[54]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[55]  B. C. Motter,et al.  Neural correlates of feature selective memory and pop-out in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[57]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[58]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[59]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.