BET Bromodomain Proteins Function as Master Transcription Elongation Factors Independent of CDK9 Recruitment.

[1]  R. Young,et al.  Transcriptional Addiction in Cancer , 2017, Cell.

[2]  J. Bradner,et al.  Design and Characterization of Bivalent BET Inhibitors , 2016, Nature chemical biology.

[3]  Roland Eils,et al.  Active medulloblastoma enhancers reveal subgroup-specific cellular origins , 2016, Nature.

[4]  Richard A Young,et al.  Models of human core transcriptional regulatory circuitries , 2016, Genome research.

[5]  James E. Bradner,et al.  Phthalimide conjugation as a strategy for in vivo target protein degradation , 2015, Science.

[6]  C. Crews,et al.  Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4. , 2015, Chemistry & biology.

[7]  A. Ciulli,et al.  Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4 , 2015, ACS chemical biology.

[8]  Alex P. Reynolds,et al.  Native Elongating Transcript Sequencing Reveals Human Transcriptional Activity at Nucleotide Resolution , 2015, Cell.

[9]  John T. Lis,et al.  Getting up to speed with transcription elongation by RNA polymerase II , 2015, Nature Reviews Molecular Cell Biology.

[10]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[11]  David A. Orlando,et al.  Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. , 2014, Cell reports.

[12]  Andrew L. Kung,et al.  NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis. , 2014, Molecular cell.

[13]  Wei Zhang,et al.  Biased Multicomponent Reactions to Develop Novel Bromodomain Inhibitors , 2014, Journal of medicinal chemistry.

[14]  Jeremy L. Jenkins,et al.  Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide , 2014, Nature.

[15]  Edward L. Huttlin,et al.  MultiNotch MS3 Enables Accurate, Sensitive, and Multiplexed Detection of Differential Expression across Cancer Cell Line Proteomes , 2014, Analytical chemistry.

[16]  Edward L. Huttlin,et al.  Quantitative Temporal Viromics: An Approach to Investigate Host-Pathogen Interaction , 2014, Cell.

[17]  Sridhar Ramaswamy,et al.  Targeting transcription regulation in cancer with a covalent CDK7 inhibitor , 2014, Nature.

[18]  M. Geyer,et al.  Brd4 activates P-TEFb for RNA polymerase II CTD phosphorylation , 2014, Nucleic acids research.

[19]  J. Lis,et al.  Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons , 2014, eLife.

[20]  L. Wodicka,et al.  Dual kinase-bromodomain inhibitors for rationally designed polypharmacology , 2014, Nature chemical biology.

[21]  Christopher J. Ott,et al.  The Myeloma Drug Lenalidomide Promotes the Cereblon-Dependent Destruction of Ikaros Proteins , 2014, Science.

[22]  William B. Smith,et al.  Genome-wide localization of small molecules , 2013, Nature Biotechnology.

[23]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[24]  Saptarsi M. Haldar,et al.  BET Bromodomains Mediate Transcriptional Pause Release in Heart Failure , 2013, Cell.

[25]  P. Nordlund,et al.  Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay , 2013, Science.

[26]  David A. Orlando,et al.  Selective Inhibition of Tumor Oncogenes by Disruption of Super-Enhancers , 2013, Cell.

[27]  David A. Orlando,et al.  Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes , 2013, Cell.

[28]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[29]  John T. Lis,et al.  Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans , 2012, Nature Reviews Genetics.

[30]  A. Ferrando,et al.  The molecular basis of T cell acute lymphoblastic leukemia. , 2012, The Journal of clinical investigation.

[31]  Charles Y. Lin,et al.  Transcriptional Amplification in Tumor Cells with Elevated c-Myc , 2012, Cell.

[32]  Richard A Young,et al.  Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. , 2012, Cancer cell.

[33]  Patrick Cramer,et al.  Architecture of the RNA polymerase–Spt4/5 complex and basis of universal transcription processivity , 2011, The EMBO journal.

[34]  K. Murakami,et al.  RNA polymerase and transcription elongation factor Spt4/5 complex structure , 2010, Proceedings of the National Academy of Sciences.

[35]  Edward L. Huttlin,et al.  A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression , 2010, Cell.

[36]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[37]  Christopher B. Burge,et al.  c-Myc Regulates Transcriptional Pause Release , 2010, Cell.

[38]  Tina N. Davis,et al.  In Vivo Pharmacodynamic Imaging of Proteasome Inhibition , 2009, Molecular imaging.

[39]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[40]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[41]  T. Margaritis,et al.  Poised RNA Polymerase II Gives Pause for Thought , 2008, Cell.

[42]  B. Peterlin,et al.  Controlling the elongation phase of transcription with P-TEFb. , 2006, Molecular cell.

[43]  Kathleen F. Kerr,et al.  The External RNA Controls Consortium: a progress report , 2005, Nature Methods.

[44]  J. Brady,et al.  The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. , 2005, Molecular cell.

[45]  Thomas A M Kramer,et al.  Drug development. , 2002, MedGenMed : Medscape general medicine.

[46]  F. Winston,et al.  Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. , 1998, Genes & development.