Hybrid optimization of cabled-trusses: Benchmarks for mechanical engineering

This paper proposes cabled-trusses benchmarks for mechanical engineering applications and provides suitable tools for modeling and optimization of cabled-trusses. These structures correspond to a system of cables and triangular bar formations jointed at their ends by hinged connections to form a rigid framework. The optimized cabled-truss is determined through a discrete optimization procedure that uses nonlinear finite element analysis, genetic algorithm, and fuzzy logic. In this work, planar and spatial trusses and cabled-trusses are optimized to achieve minimum weight designs. Also, the structural performance of the optimized structures is compared. In summary, the results show that cabled-trusses feature improvements over trusses.

[1]  Terence O'Brien,et al.  General Solution of Suspended Cable Problems , 1967 .

[2]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[3]  Carmine Pappalettere,et al.  Metaheuristic Design Optimization of Skeletal Structures: A Review , 2010 .

[4]  Xin-She Yang,et al.  Engineering Optimization: An Introduction with Metaheuristic Applications , 2010 .

[5]  K. Deb,et al.  Design of truss-structures for minimum weight using genetic algorithms , 2001 .

[6]  Michael Valásek,et al.  Fuzzy-Genetic System Applied to Topology Optimization of Cable-Trusses Modular Design , 2012, ICHIT.

[7]  Hojjat Adeli,et al.  Interactive microcomputer-aided analysis of tensile network structures , 1994 .

[8]  P. Hajela,et al.  Genetic algorithms in truss topological optimization , 1995 .

[9]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[10]  Seung-Eock Kim,et al.  Nonlinear static and dynamic analysis of cable structures , 2011 .

[11]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[12]  K. Bathe Finite Element Procedures , 1995 .

[13]  Marco Ceccarelli,et al.  Comparison of indices for stiffness performance evaluation , 2010 .

[14]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[15]  Fan Zijie,et al.  Truss Topology Optimization Using Genetic Algorithm with Individual Identification Technique , 2009 .

[16]  Gerard R. Monforton,et al.  Analysis of truss-cable structures , 1980 .

[17]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[18]  John W. Leonard,et al.  Tension Structures: Behavior and Analysis , 1987 .

[19]  Georgică Slămnoiu,et al.  On the equilibrium configuration of mooring and towing cables , 2008 .

[20]  A. Dominguez,et al.  Practical design optimization of truss structures using the genetic algorithms , 2006 .

[21]  Mehmet Polat Saka,et al.  Optimum Design of Steel Frames using Stochastic Search Techniques Based on Natural Phenomena: A Review , 2007 .

[22]  Jong-Hwan Kim,et al.  Quantum-inspired evolutionary algorithm for a class of combinatorial optimization , 2002, IEEE Trans. Evol. Comput..

[23]  Michael Valásek,et al.  Sensitivity analysis of fuzzy-genetic approach applied to cabled-truss design , 2014, J. Intell. Fuzzy Syst..

[24]  Raid Karoumi,et al.  Some modeling aspects in the nonlinear finite element analysis of cable supported bridges , 1999 .

[26]  M. Ohsaki Genetic algorithm for topology optimization of trusses , 1995 .

[27]  Liangjin Gui,et al.  Topology and Sizing Optimization of Truss Structures Using Adaptive Genetic Algorithm with Node Matrix Encoding , 2009, 2009 Fifth International Conference on Natural Computation.

[28]  O. Hasançebi,et al.  Comparison of non-deterministic search techniques in the optimum design of real size steel frames , 2010 .

[29]  Prabhat Hajela,et al.  Minimizing distortion in truss structures—A Hopfield network solution , 1993 .

[30]  T. Clapp,et al.  Ultrastrong, Stiff, and Lightweight Carbon‐Nanotube Fibers , 2007 .

[31]  Kwang Hyung Lee,et al.  First Course on Fuzzy Theory and Applications , 2005, Advances in Soft Computing.

[32]  Leal da Silva Wilson Ricardo Fuzzy logic-based expert systems applied to concrete technology , 2013 .

[33]  Finotto Vitor Cores Cabled-trusses: Concept, Modeling and Optimization , 2014 .

[34]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[35]  Peter J. Fleming,et al.  The MATLAB genetic algorithm toolbox , 1995 .

[36]  William G. Davids,et al.  Effect of inflation pressure on the constitutive response of coated woven fabrics used in airbeams , 2011 .

[37]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[38]  Hj Heiko Martin,et al.  Research on the combination of water and membranes as a structural building material. , 2009 .

[39]  Kenji Nagase,et al.  Tensile Tensegrity Structures , 2012 .

[40]  Philippe Bouillard,et al.  Multiobjective topology optimization of truss structures with kinematic stability repair , 2012, Structural and Multidisciplinary Optimization.

[41]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[42]  W. J. Lewis,et al.  Dynamic relaxation analysis of the non-linear static response of pretensioned cable roofs , 1984 .

[43]  Frank Baron,et al.  Nonlinear Analysis of Cable and Truss Structures , 1971 .

[44]  Hiroshi Ohmori,et al.  Truss topology optimization by a modified genetic algorithm , 2002 .

[45]  Jacek Pietrzak Matrix formulation of static analysis of cable structures , 1978 .

[46]  O. Hasançebi,et al.  Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures , 2009 .

[47]  Robert E. Skelton,et al.  Stiffness of planar tensegrity truss topologies , 2006 .