The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing

[1]  John B. Heywood,et al.  Flow in the piston-cylinder-ring crevices of a spark-ignition engine: effect on hydrocarbon emissions, efficiency and power , 1982 .

[2]  John B. Heywood,et al.  Internal combustion engine fundamentals , 1988 .

[3]  F. N. Alasfour Butanol—A single-cylinder engine study: availability analysis , 1997 .

[4]  F. N. Alasfour NOx Emission from a spark ignition engine using 30% Iso-butanol–gasoline blend: Part 1—Preheating inlet air , 1998 .

[5]  F. N. Alasfour NOx EMISSION FROM A SPARK IGNITION ENGINE USING 30% ISO-BUTANOL–GASOLINE BLEND: PART 2—IGNITION TIMING , 1998 .

[6]  A. Alkidas Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions , 1999 .

[7]  F. N. Alasfour The effect of using 30% iso-butanol-gasoline blend on hydrocarbon emissions from a spark-ignition engine , 1999 .

[8]  N. Qureshi,et al.  Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation , 2000, Applied biochemistry and biotechnology.

[9]  Eran Sher,et al.  Optimization of variable valve timing for maximizing performance of an unthrottled SI engine—a theoretical study , 2002 .

[10]  E. Papoutsakis,et al.  Design of Antisense RNA Constructs for Downregulation of the Acetone Formation Pathway of Clostridium acetobutylicum , 2003, Journal of bacteriology.

[11]  C. Tomas,et al.  Transcriptional Analysis of Butanol Stress and Tolerance in Clostridium acetobutylicum , 2004, Journal of bacteriology.

[12]  H. Hong,et al.  Review and analysis of variable valve timing strategies—eight ways to approach , 2004 .

[13]  James Turner,et al.  Influence of variable valve timings on the gas exchange process in a controlled auto-ignition engine , 2004 .

[14]  T. Ezeji,et al.  Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping , 2004, Applied Microbiology and Biotechnology.

[15]  M. I. Karamangil,et al.  In cylinder expansion of ring crevice and oil film hydrocarbons in SI engines , 2004 .

[16]  M. Scotcher,et al.  SpoIIE Regulates Sporulation but Does Not Directly Affect Solventogenesis in Clostridium acetobutylicum ATCC 824 , 2005, Journal of bacteriology.

[17]  V. Zverlov,et al.  Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery , 2006, Applied Microbiology and Biotechnology.

[18]  G. Stephanopoulos,et al.  Engineering Yeast Transcription Machinery for Improved Ethanol Tolerance and Production , 2006, Science.

[19]  T. Ezeji,et al.  Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping , 2007, Journal of Industrial Microbiology & Biotechnology.

[20]  T. Ezeji,et al.  Bioproduction of butanol from biomass: from genes to bioreactors. , 2007, Current opinion in biotechnology.

[21]  A. Tsolakis,et al.  Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation) , 2007 .

[22]  P. Dürre Biobutanol: An attractive biofuel , 2007, Biotechnology journal.

[23]  T. Ezeji,et al.  Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation , 2007, Biotechnology and bioengineering.

[24]  E. Papoutsakis,et al.  Dynamics of Genomic-Library Enrichment and Identification of Solvent Tolerance Genes for Clostridium acetobutylicum , 2007, Applied and Environmental Microbiology.

[25]  A. Maiboom,et al.  Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine , 2008 .

[26]  D. Richardson,et al.  Characteristics of Ethanol, Butanol, Iso-Octane and Gasoline Sprays and Combustion from a Multi-Hole Injector in a DISI Engine , 2008 .

[27]  T. Ezeji,et al.  Fermentation of dried distillers' grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. , 2008, Bioresource technology.

[28]  Haiyong Peng,et al.  Effects of exhaust gas recirculation (EGR) on combustion and emissions during cold start of direct injection (DI) diesel engine , 2008 .

[29]  M. Inui,et al.  Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli , 2008, Applied Microbiology and Biotechnology.

[30]  Fabrizio Bonatesta,et al.  Factors influencing the burn rate characteristics of a spark ignition engine with variable valve timing , 2008 .

[31]  J. Liao,et al.  Metabolic engineering for advanced biofuels production from Escherichia coli. , 2008, Current opinion in biotechnology.

[32]  Kevin M. Smith,et al.  Metabolic engineering of Escherichia coli for 1-butanol production. , 2008, Metabolic engineering.

[33]  J. Liao,et al.  Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels , 2008, Nature.

[34]  J. Liao,et al.  Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. , 2008, Metabolic engineering.

[35]  P. Dürre Fermentative Butanol Production , 2008, Annals of the New York Academy of Sciences.

[36]  P. Izák,et al.  Increased productivity of Clostridium acetobutylicum fermentation of acetone, butanol, and ethanol by pervaporation through supported ionic liquid membrane , 2008, Applied Microbiology and Biotechnology.

[37]  Y. Ni,et al.  Recent progress on industrial fermentative production of acetone–butanol–ethanol by Clostridium acetobutylicum in China , 2009, Applied Microbiology and Biotechnology.

[38]  Miroslaw L. Wyszynski,et al.  A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine , 2009 .

[39]  Yanning Zheng,et al.  Problems with the microbial production of butanol , 2009, Journal of Industrial Microbiology & Biotechnology.

[40]  Ayhan Demirbas,et al.  Political, economic and environmental impacts of biofuels: A review , 2009 .

[41]  John A. Williams,et al.  Impact of Butanol and Other Bio-Components on the Thermal Efficiency of Prototype and Conventional Engines , 2009 .

[42]  Z. Zhong,et al.  Dyno Test Investigations of Gasoline Engine Fueled with Butanol-Gasoline Blends , 2009 .

[43]  F. Salimi,et al.  Role of mixture richness, spark and valve timing in hydrogen-fuelled engine performance and emission , 2009 .

[44]  G. Fontana,et al.  Variable valve timing for fuel economy improvement in a small spark-ignition engine , 2009 .

[45]  V. Zverlov,et al.  Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis , 2010, Applied Microbiology and Biotechnology.

[46]  A. Irimescu Study of cold start air-fuel mixture parameters for spark ignition engines fueled with gasoline-isobutanol blends , 2010 .

[47]  Ziyong Liu,et al.  Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran , 2010, Journal of Industrial Microbiology & Biotechnology.

[48]  S. Szwaja,et al.  Combustion of n-butanol in a spark-ignition IC engine , 2010 .

[49]  F. Halter,et al.  Evaluation of Butanol–Gasoline Blends in a Port Fuel-injection, Spark-Ignition Engine , 2010 .

[50]  C. Lee,et al.  Emissions Characteristics of Neat Butanol Fuel Using a Port Fuel-Injected, Spark-Ignition Engine , 2011 .

[51]  C. Lee,et al.  Combustion Characteristics and Soot Distributions of Neat Butanol and Neat Soybean Biodiesel , 2011 .

[52]  Adrian Irimescu,et al.  Fuel conversion efficiency of a port injection engine fueled with gasolineisobutanol blends , 2011 .

[53]  J. Liao,et al.  Driving Forces Enable High-Titer Anaerobic 1-Butanol Synthesis in Escherichia coli , 2011, Applied and Environmental Microbiology.

[54]  M. D. Checkel,et al.  The influence of Exhaust Gas Recirculation (EGR) on combustion and emissions of n-heptane/natural gas fueled Homogeneous Charge Compression Ignition (HCCI) engines , 2011 .

[55]  F. Halter,et al.  Experimental determination of laminar burning velocity for butanol and ethanol iso-octane blends , 2011 .

[56]  Jing Yang,et al.  The Performance Analysis of an Engine Fueled with Butanol-Gasoline Blend , 2011 .

[57]  H. Bahl,et al.  Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. , 2011, Current opinion in biotechnology.

[58]  Chao Jin,et al.  Progress in the production and application of n-butanol as a biofuel , 2011 .

[59]  T. Niass,et al.  Butanol Blending - a Promising Approach to Enhance the Thermodynamic Potential of Gasoline - Part 1 , 2011 .

[60]  Martin Pechout,et al.  Effect of Higher Content N-Butanol Blends on Combustion, Exhaust Emissions and Catalyst Performance of an Unmodified SI Vehicle Engine , 2012 .

[61]  Adrian Irimescu,et al.  Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol , 2012 .

[62]  C. Lee,et al.  The Effects of EGR and Injection Timing on the Engine Combustion and Emission Performances Fueled by Butanol-Diesel Blends , 2012 .

[63]  C. Rakopoulos,et al.  CFD modeling and experimental study of combustion and nitric oxide emissions in hydrogen-fueled spark-ignition engine operating in a very wide range of EGR rates , 2012 .

[64]  Quanchang Zhang,et al.  Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion , 2012 .

[65]  Gerardo Valentino,et al.  Optical diagnostics of the combustion process in a PFI SI boosted engine fueled with butanol–gasoline blend , 2012 .

[66]  C. Lee,et al.  Soot Emissions of Various Oxygenated Biofuels in Conventional Diesel Combustion and Low-Temperature Combustion Conditions , 2012 .

[67]  J. Hussain,et al.  RETRACTED: Effect of Exhaust Gas Recirculation (EGR) on Performance and Emission characteristics of a Three Cylinder Direct Injection Compression Ignition Engine , 2012 .

[68]  C. Lee,et al.  Reduction in emissions of nitrogen oxides, particulate matter, and polycyclic aromatic hydrocarbon by adding water-containing butanol into a diesel-fueled engine generator , 2012 .

[69]  Zuo-hua Huang,et al.  Emission characteristics of a spark-ignition engine fuelled with gasoline-n-butanol blends in combination with EGR , 2012 .

[70]  Q. Fang,et al.  Influences of pilot injection and exhaust gas recirculation (EGR) on combustion and emissions in a HCCI-DI combustion engine , 2012 .

[71]  D. Kyritsis,et al.  Experimental Investigation of Butanol Isomer Combustion in Spark Ignition Engines , 2012 .

[72]  Hongming Xu,et al.  Ignition timing sensitivities of oxygenated biofuels compared to gasoline in a direct-injection SI engine , 2012 .

[73]  R. Kiplimo,et al.  Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine , 2012 .

[74]  F. Halter,et al.  Comparison of regulated and non-regulated pollutants with iso-octane/butanol and iso-octane/ethanol blends in a port-fuel injection Spark-Ignition engine , 2012 .

[75]  Giorgio Zamboni,et al.  Experimental study on the effects of HP and LP EGR in an automotive turbocharged diesel engine , 2012 .

[76]  Wei Hong,et al.  Research on using EGR and ignition timing to control load of a spark-ignition engine fueled with methanol , 2013 .

[77]  Xiaoxu Tian,et al.  Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. , 2013, Journal of proteomics.

[78]  Hua Zhao,et al.  A study of mechanical variable valve operation with gasoline-alcohol fuels in a spark ignition engine , 2013 .

[79]  X. Bai,et al.  Effects of EGR on the structure and emissions of diesel combustion , 2013 .