Convergence of adaptive boundary element methods

A poste riori error estimators and adaptive mesh-refinement have themselves proven to be an important tool for scientific computing. For error control in finite element methods (FEM), there is a broad variety of a posteriori error estimators available, and convergence as well as optimality of adaptive FEM is well-studied in the literature. This is in sharp contrast to the boundary element method (BEM). Although a posteriori error estimators and adaptive algorithms are also successfully applied to boundary element schemes, even convergence of adaptive BEM is hardly understood mathematically. In our contribution, we present and discuss recent mathematical results which give first positive answers for adaptive BEM.

[1]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[2]  S Sauter,et al.  Boundary elements methods. Analysis, numerics and implementation of fast algorithms. (Randelementmethoden. Analyse, Numerik und Implementierung schneller Algorithmen.) , 2004 .

[3]  Carsten Carstensen,et al.  A posteriori error estimates for boundary element methods , 1995 .

[4]  Birgit Faermann,et al.  Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods Part II. The three-dimensional case , 2002, Numerische Mathematik.

[5]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[6]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[7]  Stefan A. Funken,et al.  Simple error estimators for the Galerkin BEM for some hypersingular integral equation in 2D , 2013 .

[8]  Dirk Praetorius,et al.  Simple a posteriori error estimators for the h-version of the boundary element method , 2008, Computing.

[9]  Wolfgang Dahmen,et al.  Adaptive methods for boundary integral equations: Complexity and convergence estimates , 2007, Math. Comput..

[10]  Carsten Carstensen,et al.  Adaptive Boundary Element Methods for Some First Kind Integral Equations , 1996 .

[11]  Stefan A. Funken,et al.  Energy norm based a posteriori error estimation for boundary element methods in two dimensions , 2009 .

[12]  Rob P. Stevenson,et al.  Computation of Singular Integral Operators in Wavelet Coordinates , 2005, Computing.

[13]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[14]  Carsten Carstensen,et al.  Numerische Mathematik A posteriori error estimate and h-adaptive algorithm on surfaces for Symm ’ s integral equation , 2001 .

[15]  Norbert Heuer,et al.  An adaptive boundary element method for the exterior Stokes problem in three dimensions , 2006 .

[16]  Ernst P. Stephan,et al.  Two-level methods for the single layer potential in ℝ3 , 1998, Computing.

[17]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[18]  Carsten Carstensen,et al.  Averaging Techniques for the A Posteriori BEM Error Control for a Hypersingular Integral Equation in Two Dimensions , 2007, SIAM J. Sci. Comput..

[19]  Christoph Ortner,et al.  Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.

[20]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[21]  Olaf Steinbach,et al.  A new a posteriori error estimator in adaptive direct boundary element method , 2000 .

[22]  Carsten Carstensen,et al.  Averaging Techniques for the Effective Numerical Solution of Symm's Integral Equation of the First Kind , 2005, SIAM J. Sci. Comput..

[23]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[24]  Ernst P. Stephan,et al.  Adaptive multilevel BEM for acoustic scattering , 1997 .

[25]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[26]  Olaf Steinbach,et al.  A new a posteriori error estimator in adaptive direct boundary element methods: the Dirichlet problem , 2000 .

[27]  Carsten Carstensen,et al.  An a posteriori error estimate for a first-kind integral equation , 1997, Math. Comput..

[28]  Carsten Carstensen,et al.  Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes , 1996, Math. Comput..

[29]  Kunibert G. Siebert,et al.  A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .

[30]  Carsten Carstensen,et al.  Mathematical foundation of a posteriori error estimates and adaptive mesh-refining algorithms for boundary integral equations of the first kind , 2001 .

[31]  Carsten Carstensen,et al.  Residual-based a posteriori error estimate for hypersingular equation on surfaces , 2004, Numerische Mathematik.

[32]  Olaf Steinbach Adaptive Boundary Element Methods Based on Computational Schemes for Sobolev Norms , 2000, SIAM J. Sci. Comput..

[33]  B Faermann Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods. Part I. The two-dimensional case , 2000 .

[34]  Prof.Dr Panayotis G. Kevrekidis The Three-Dimensional Case , 2009 .

[35]  Rob P. Stevenson,et al.  An Optimal Adaptive Finite Element Method , 2004, SIAM J. Numer. Anal..

[36]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[37]  Wolfgang Dahmen,et al.  Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..

[38]  Norbert Heuer,et al.  hp-adaptive Two-Level Methods for Boundary Integral Equations on Curves , 2001, Computing.

[39]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.