Convergence of adaptive boundary element methods
暂无分享,去创建一个
[1] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[2] S Sauter,et al. Boundary elements methods. Analysis, numerics and implementation of fast algorithms. (Randelementmethoden. Analyse, Numerik und Implementierung schneller Algorithmen.) , 2004 .
[3] Carsten Carstensen,et al. A posteriori error estimates for boundary element methods , 1995 .
[4] Birgit Faermann,et al. Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods Part II. The three-dimensional case , 2002, Numerische Mathematik.
[5] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[6] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[7] Stefan A. Funken,et al. Simple error estimators for the Galerkin BEM for some hypersingular integral equation in 2D , 2013 .
[8] Dirk Praetorius,et al. Simple a posteriori error estimators for the h-version of the boundary element method , 2008, Computing.
[9] Wolfgang Dahmen,et al. Adaptive methods for boundary integral equations: Complexity and convergence estimates , 2007, Math. Comput..
[10] Carsten Carstensen,et al. Adaptive Boundary Element Methods for Some First Kind Integral Equations , 1996 .
[11] Stefan A. Funken,et al. Energy norm based a posteriori error estimation for boundary element methods in two dimensions , 2009 .
[12] Rob P. Stevenson,et al. Computation of Singular Integral Operators in Wavelet Coordinates , 2005, Computing.
[13] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[14] Carsten Carstensen,et al. Numerische Mathematik A posteriori error estimate and h-adaptive algorithm on surfaces for Symm ’ s integral equation , 2001 .
[15] Norbert Heuer,et al. An adaptive boundary element method for the exterior Stokes problem in three dimensions , 2006 .
[16] Ernst P. Stephan,et al. Two-level methods for the single layer potential in ℝ3 , 1998, Computing.
[17] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[18] Carsten Carstensen,et al. Averaging Techniques for the A Posteriori BEM Error Control for a Hypersingular Integral Equation in Two Dimensions , 2007, SIAM J. Sci. Comput..
[19] Christoph Ortner,et al. Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators , 2010, Numerische Mathematik.
[20] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[21] Olaf Steinbach,et al. A new a posteriori error estimator in adaptive direct boundary element method , 2000 .
[22] Carsten Carstensen,et al. Averaging Techniques for the Effective Numerical Solution of Symm's Integral Equation of the First Kind , 2005, SIAM J. Sci. Comput..
[23] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[24] Ernst P. Stephan,et al. Adaptive multilevel BEM for acoustic scattering , 1997 .
[25] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[26] Olaf Steinbach,et al. A new a posteriori error estimator in adaptive direct boundary element methods: the Dirichlet problem , 2000 .
[27] Carsten Carstensen,et al. An a posteriori error estimate for a first-kind integral equation , 1997, Math. Comput..
[28] Carsten Carstensen,et al. Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes , 1996, Math. Comput..
[29] Kunibert G. Siebert,et al. A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .
[30] Carsten Carstensen,et al. Mathematical foundation of a posteriori error estimates and adaptive mesh-refining algorithms for boundary integral equations of the first kind , 2001 .
[31] Carsten Carstensen,et al. Residual-based a posteriori error estimate for hypersingular equation on surfaces , 2004, Numerische Mathematik.
[32] Olaf Steinbach. Adaptive Boundary Element Methods Based on Computational Schemes for Sobolev Norms , 2000, SIAM J. Sci. Comput..
[33] B Faermann. Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods. Part I. The two-dimensional case , 2000 .
[34] Prof.Dr Panayotis G. Kevrekidis. The Three-Dimensional Case , 2009 .
[35] Rob P. Stevenson,et al. An Optimal Adaptive Finite Element Method , 2004, SIAM J. Numer. Anal..
[36] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[37] Wolfgang Dahmen,et al. Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..
[38] Norbert Heuer,et al. hp-adaptive Two-Level Methods for Boundary Integral Equations on Curves , 2001, Computing.
[39] Ricardo H. Nochetto,et al. Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.