Coupling Proteins in Type IV Secretion.

[1]  Gabriel Waksman,et al.  Type IV secretion in Gram‐negative and Gram‐positive bacteria , 2018, Current Topics in Microbiology and Immunology.

[2]  E. Orlova,et al.  Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery , 2017, The EMBO journal.

[3]  P. Christie Structural biology: Loading T4SS substrates , 2017, Nature Microbiology.

[4]  M. Llosa,et al.  DNA Delivery and Genomic Integration into Mammalian Target Cells through Type IV A and B Secretion Systems of Human Pathogens , 2017, Front. Microbiol..

[5]  Nam Ki Lee,et al.  Architecture of the type IV coupling protein complex of Legionella pneumophila , 2017, Nature Microbiology.

[6]  F. de la Cruz,et al.  Substrate translocation involves specific lysine residues of the central channel of the conjugative coupling protein TrwB , 2017, Molecular Genetics and Genomics.

[7]  C. Baron,et al.  Structural Analysis and Inhibition of TraE from the pKM101 Type IV Secretion System* , 2016, The Journal of Biological Chemistry.

[8]  N. Goessweiner-Mohr,et al.  DNA-Binding Proteins Regulating pIP501 Transfer and Replication , 2016, Front. Mol. Biosci..

[9]  P. Christie The Mosaic Type IV Secretion Systems. , 2016, EcoSal Plus.

[10]  J. Schildbach,et al.  Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins , 2016, Front. Mol. Biosci..

[11]  Christian González-Rivera,et al.  Chimeric Coupling Proteins Mediate Transfer of Heterologous Type IV Effectors through the Escherichia coli pKM101-Encoded Conjugation Machine , 2016, Journal of bacteriology.

[12]  F. de la Cruz,et al.  Type IV traffic ATPase TrwD as molecular target to inhibit bacterial conjugation , 2016, Molecular microbiology.

[13]  Christian González-Rivera,et al.  Mechanism and Function of Type IV Secretion During Infection of the Human Host. , 2016, Microbiology spectrum.

[14]  R. Meyer Mapping Type IV Secretion Signals on the Primase Encoded by the Broad-Host-Range Plasmid R1162 (RSF1010) , 2015, Journal of bacteriology.

[15]  A. Azad,et al.  Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion , 2015, PLoS pathogens.

[16]  Yuqing Chen,et al.  The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates , 2015, Journal of bacteriology.

[17]  Christian González-Rivera,et al.  Mechanism and structure of the bacterial type IV secretion systems. , 2014, Biochimica et biophysica acta.

[18]  E. Orlova,et al.  Structure of a type IV secretion system , 2014, Nature.

[19]  F. Goñi,et al.  Subcellular location of the coupling protein TrwB and the role of its transmembrane domain. , 2014, Biochimica et biophysica acta.

[20]  F. Goñi,et al.  The transmembrane domain of the T4SS coupling protein TrwB and its role in protein-protein interactions. , 2013, Biochimica et biophysica acta.

[21]  C. Dehio,et al.  A Translocation Motif in Relaxase TrwC Specifically Affects Recruitment by Its Conjugative Type IV Secretion System , 2013, Journal of bacteriology.

[22]  F. de la Cruz,et al.  Functional Interactions of VirB11 Traffic ATPases with VirB4 and VirD4 Molecular Motors in Type IV Secretion Systems , 2013, Journal of bacteriology.

[23]  F. de la Cruz,et al.  Structural independence of conjugative coupling protein TrwB from its Type IV secretion machinery. , 2013, Plasmid.

[24]  E. Cascales,et al.  DNA Substrate-Induced Activation of the Agrobacterium VirB/VirD4 Type IV Secretion System , 2013, Journal of bacteriology.

[25]  N. Maizels,et al.  The G4 Genome , 2013, PLoS genetics.

[26]  E. Rocha,et al.  Evolution of Conjugation and Type IV Secretion Systems , 2012, Molecular biology and evolution.

[27]  F. Goñi,et al.  Deletion of a single helix from the transmembrane domain causes large changes in membrane insertion properties and secondary structure of the bacterial conjugation protein TrwB. , 2012, Biochimica et biophysica acta.

[28]  A. Peña,et al.  The Hexameric Structure of a Conjugative VirB4 Protein ATPase Provides New Insights for a Functional and Phylogenetic Relationship with DNA Translocases* , 2012, The Journal of Biological Chemistry.

[29]  Molly C. Sutherland,et al.  The Legionella IcmSW Complex Directly Interacts with DotL to Mediate Translocation of Adaptor-Dependent Substrates , 2012, PLoS pathogens.

[30]  I. Arechaga,et al.  Membrane-associated nanomotors for macromolecular transport. , 2012, Current opinion in biotechnology.

[31]  Christoph Dehio,et al.  New perspectives into bacterial DNA transfer to human cells. , 2012, Trends in microbiology.

[32]  K. Walldén,et al.  Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system , 2012, Proceedings of the National Academy of Sciences.

[33]  Yuqing Chen,et al.  Enterococcus faecalis PrgJ, a VirB4-Like ATPase, Mediates pCF10 Conjugative Transfer through Substrate Binding , 2012, Journal of bacteriology.

[34]  E. Zechner,et al.  General requirements for protein secretion by the F-like conjugation system R1 , 2012, Plasmid.

[35]  P. Christie,et al.  Caught in the act: the dialogue between bacteriophage R17 and the type IV secretion machine of plasmid R1 , 2011, Molecular microbiology.

[36]  K. Zangger,et al.  An activation domain of plasmid R1 TraI protein delineates stages of gene transfer initiation , 2011, Molecular microbiology.

[37]  M. Itaya,et al.  Localization Pattern of Conjugation Machinery in a Gram-Positive Bacterium , 2011, Journal of bacteriology.

[38]  C. Dehio,et al.  Transfer of R388 Derivatives by a Pathogenesis-Associated Type IV Secretion System into both Bacteria and Human Cells , 2011, Journal of bacteriology.

[39]  Christoph Dehio,et al.  Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae , 2011, Proceedings of the National Academy of Sciences.

[40]  F. Goñi,et al.  Membrane insertion stabilizes the structure of TrwB, the R388 conjugative plasmid coupling protein. , 2011, Biochimica et biophysica acta.

[41]  F. Goñi,et al.  Reconstitution in liposome bilayers enhances nucleotide binding affinity and ATP-specificity of TrwB conjugative coupling protein. , 2010, Biochimica et biophysica acta.

[42]  W. Fischer,et al.  The Coupling Protein Cagβ and Its Interaction Partner CagZ Are Required for Type IV Secretion of the Helicobacter pylori CagA Protein , 2010, Infection and Immunity.

[43]  Y. Rikihisa,et al.  Microreview: Type IV secretion in the obligatory intracellular bacterium Anaplasma phagocytophilum , 2010, Cellular microbiology.

[44]  Fernando de la Cruz,et al.  Mobility of Plasmids , 2010, Microbiology and Molecular Biology Reviews.

[45]  G. Rivas,et al.  The Conjugative DNA Translocase TrwB Is a Structure-specific DNA-binding Protein* , 2010, The Journal of Biological Chemistry.

[46]  C. Dehio,et al.  Functional Dissection of the Conjugative Coupling Protein TrwB , 2010, Journal of bacteriology.

[47]  W. Keller,et al.  Biochemical characterization of three putative ATPases from a new type IV secretion system of Aeromonas veronii plasmid pAC3249A , 2010, BMC Biochemistry.

[48]  P. Christie,et al.  Biological Diversity of Prokaryotic Type IV Secretion Systems , 2009, Microbiology and Molecular Biology Reviews.

[49]  F. de la Cruz,et al.  Plasmid R1 Conjugative DNA Processing Is Regulated at the Coupling Protein Interface , 2009, Journal of bacteriology.

[50]  Fernando de la Cruz,et al.  The diversity of conjugative relaxases and its application in plasmid classification. , 2009, FEMS microbiology reviews.

[51]  W. L. Teng,et al.  The Putative Coupling Protein TcpA Interacts with Other pCW3-Encoded Proteins To Form an Essential Part of the Conjugation Complex , 2009, Journal of bacteriology.

[52]  J. Glover,et al.  Structural basis of specific TraD–TraM recognition during F plasmid‐mediated bacterial conjugation , 2008, Molecular microbiology.

[53]  G. Dunny,et al.  Enterococcus faecalis PcfC, a Spatially Localized Substrate Receptor for Type IV Secretion of the pCF10 Transfer Intermediate , 2008, Journal of bacteriology.

[54]  C. Hew,et al.  Recruitment of conjugative DNA transfer substrate to Agrobacterium type IV secretion apparatus , 2007, Proceedings of the National Academy of Sciences.

[55]  Michael Y. Galperin,et al.  Inventing the dynamo machine: the evolution of the F-type and V-type ATPases , 2007, Nature Reviews Microbiology.

[56]  Fernando de la Cruz,et al.  The ATPase Activity of the DNA Transporter TrwB Is Modulated by Protein TrwA , 2007, Journal of Biological Chemistry.

[57]  J. Rood,et al.  TcpA, an FtsK/SpoIIIE Homolog, Is Essential for Transfer of the Conjugative Plasmid pCW3 in Clostridium perfringens , 2007, Journal of bacteriology.

[58]  M. Gilmour,et al.  Interaction between the co-inherited TraG coupling protein and the TraJ membrane-associated protein of the H-plasmid conjugative DNA transfer system resembles chromosomal DNA translocases. , 2007, Microbiology.

[59]  E. Grohmann,et al.  A Type IV-Secretion-Like System Is Required for Conjugative DNA Transport of Broad-Host-Range Plasmid pIP501 in Gram-Positive Bacteria , 2007, Journal of bacteriology.

[60]  F. de la Cruz,et al.  The transmembrane domain provides nucleotide binding specificity to the bacterial conjugation protein TrwB , 2006, FEBS letters.

[61]  F. de la Cruz,et al.  TrwB: an F(1)-ATPase-like molecular motor involved in DNA transport during bacterial conjugation. , 2006, Research in microbiology.

[62]  F. de la Cruz,et al.  Site-specific recombinase and integrase activities of a conjugative relaxase in recipient cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  M. Gilmour,et al.  Subcellular localization and functional domains of the coupling protein, TraG, from IncHI1 plasmid R27. , 2005, Microbiology.

[64]  C. Dehio,et al.  Functional interactions between type IV secretion systems involved in DNA transfer and virulence. , 2005, Microbiology.

[65]  L. Frost,et al.  Mutations in the C-Terminal Region of TraM Provide Evidence for In Vivo TraM-TraD Interactions during F-Plasmid Conjugation , 2005, Journal of bacteriology.

[66]  F. de la Cruz,et al.  TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  R. Isberg,et al.  The DotL Protein, a Member of the TraG-Coupling Protein Family, Is Essential for Viability of Legionella pneumophila Strain Lp02 , 2005, Journal of bacteriology.

[68]  K. Sjölander,et al.  Predicted hexameric structure of the Agrobacterium VirB4 C terminus suggests VirB4 acts as a docking site during type IV secretion. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  A. Vergunst,et al.  Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  E. Cascales,et al.  Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  E. Cascales,et al.  Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion , 2004, Molecular microbiology.

[72]  G. Koraimann,et al.  Thirty-Eight C-Terminal Amino Acids of the Coupling Protein TraD of the F-Like Conjugative Resistance Plasmid R1 Are Required and Sufficient To Confer Binding to the Substrate Selector Protein TraM , 2004, Journal of bacteriology.

[73]  E. Cascales,et al.  Definition of a Bacterial Type IV Secretion Pathway for a DNA Substrate , 2004, Science.

[74]  F. Goñi,et al.  Role of the Transmembrane Domain in the Stability of TrwB, an Integral Protein Involved in Bacterial Conjugation* , 2004, Journal of Biological Chemistry.

[75]  F. de la Cruz,et al.  Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[76]  G. Schröder,et al.  TraG-Like Proteins of Type IV Secretion Systems: Functional Dissection of the Multiple Activities of TraG (RP4) and TrwB (R388) , 2003, Journal of bacteriology.

[77]  M. Gilmour,et al.  Interaction between the IncHI1 plasmid R27 coupling protein and type IV secretion system: TraG associates with the coiled‐coil mating pair formation protein TrhB , 2003, Molecular microbiology.

[78]  F. Goñi,et al.  Purification and Properties of TrwB, a Hexameric, ATP-binding Integral Membrane Protein Essential for R388 Plasmid Conjugation* , 2002, The Journal of Biological Chemistry.

[79]  F. Gomis-Rüth,et al.  Bacterial conjugation: a two‐step mechanism for DNA transport , 2002, Molecular microbiology.

[80]  Gabriel Waksman,et al.  TraG-Like Proteins of DNA Transfer Systems and of the Helicobacter pylori Type IV Secretion System: Inner Membrane Gate for Exported Substrates? , 2002, Journal of bacteriology.

[81]  M. Gilmour,et al.  Functional and Mutational Analysis of Conjugative Transfer Region 1 (Tra1) from the IncHI1 Plasmid R27 , 2002, Journal of bacteriology.

[82]  A. Das,et al.  Polar location and functional domains of the Agrobacterium tumefaciens DNA transfer protein VirD4 , 2002, Molecular microbiology.

[83]  Fernando de la Cruz,et al.  The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase , 2001, Nature.

[84]  C. Kado,et al.  Genetic and Environmental Factors Affecting T-Pilin Export and T-Pilus Biogenesis in Relation to Flagellation ofAgrobacterium tumefaciens , 2000, Journal of bacteriology.

[85]  S. Farrand,et al.  TraG from RP4 and TraG and VirD4 from Ti Plasmids Confer Relaxosome Specificity to the Conjugal Transfer System of pTiC58 , 2000, Journal of bacteriology.

[86]  M. Valle,et al.  Characterization of ATP and DNA Binding Activities of TrwB, the Coupling Protein Essential in Plasmid R388 Conjugation* , 1999, The Journal of Biological Chemistry.

[87]  F. de la Cruz,et al.  The Carboxyl Terminus of Protein TraD Adds Specificity and Efficiency to F-Plasmid Conjugative Transfer , 1998, Journal of bacteriology.

[88]  B. Dreiseikelmann,et al.  The cytoplasmic DNA-binding protein TraM binds to the inner membrane protein TraD in vitro , 1997, Journal of bacteriology.

[89]  F. de la Cruz,et al.  Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation , 1997, Molecular and General Genetics MGG.