GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-Order Neurons

We characterize an inhibitory circuit motif in the Drosophila olfactory system, parallel inhibition, which differs from feedforward or feedback inhibition. Excitatory and GABAergic inhibitory projection neurons (ePNs and iPNs) each receive input from antennal lobe glomeruli and send parallel output to the lateral horn, a higher center implicated in regulating innate olfactory behavior. Ca(2+) imaging of specific lateral horn neurons as an olfactory readout revealed that iPNs selectively suppressed food-related odor responses, but spared signal transmission from pheromone channels. Coapplying food odorant did not affect pheromone signal transmission, suggesting that the differential effects likely result from connection specificity of iPNs, rather than a generalized inhibitory tone. Ca(2+) responses in the ePN axon terminals show no detectable suppression by iPNs, arguing against presynaptic inhibition as a primary mechanism. The parallel inhibition motif may provide specificity in inhibition to funnel specific olfactory information, such as food and pheromone, into distinct downstream circuits.

[1]  D. Kvitsiani,et al.  Neural Circuitry that Governs Drosophila Male Courtship Behavior , 2005, Cell.

[2]  B. Dickson,et al.  A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone , 2007, Nature.

[3]  L. Luo,et al.  Representation of the Glomerular Olfactory Map in the Drosophila Brain , 2002, Cell.

[4]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[5]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[6]  Liang Liang,et al.  The Q System: A Repressible Binary System for Transgene Expression, Lineage Tracing, and Mosaic Analysis , 2010, Cell.

[7]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[8]  J. Brobeck The Integrative Action of the Nervous System , 1948, The Yale Journal of Biology and Medicine.

[9]  R. Stocker,et al.  A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Shawn R. Olsen,et al.  Divisive Normalization in Olfactory Population Codes , 2010, Neuron.

[11]  K. White,et al.  Versatile P(acman) BAC Libraries for Transgenesis Studies in Drosophila melanogaster , 2009, Nature Methods.

[12]  A. Nimmerjahn,et al.  Motor Behavior Activates Bergmann Glial Networks , 2009, Neuron.

[13]  K. Deisseroth,et al.  Bi-stable neural state switches , 2009, Nature Neuroscience.

[14]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[15]  Kei Ito,et al.  Gamma‐aminobutyric acid (GABA)‐mediated neural connections in the Drosophila antennal lobe , 2009, The Journal of comparative neurology.

[16]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[17]  J. Levine,et al.  Generalization of Courtship Learning in Drosophila Is Mediated by cis-Vaccenyl Acetate , 2007, Current Biology.

[18]  Richard Axel,et al.  A dimorphic pheromone circuit in Drosophila from sensory input to descending output , 2010, Nature.

[19]  Michele P Calos,et al.  Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. , 2004, Genetics.

[20]  Ronald L. Davis,et al.  Olfactory memory formation in Drosophila: from molecular to systems neuroscience. , 2005, Annual review of neuroscience.

[21]  David J. Anderson,et al.  Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila , 2009, Nature.

[22]  Kei Ito,et al.  Integration of Chemosensory Pathways in the Drosophila Second-Order Olfactory Centers , 2004, Current Biology.

[23]  F. Netter,et al.  Supplemental References , 2002, We Came Naked and Barefoot.

[24]  A. Wong,et al.  Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly Brain , 2003, Cell.

[25]  M. Whittington,et al.  Long-Range–Projecting GABAergic Neurons Modulate Inhibition in Hippocampus and Entorhinal Cortex , 2012, Science.

[26]  J. Carlson,et al.  Olfactory Perception: Receptors, Cells, and Circuits , 2009, Cell.

[27]  L. Abbott,et al.  Random Convergence of Olfactory Inputs in the Drosophila Mushroom Body , 2013, Nature.

[28]  Kei Ito,et al.  Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage , 2008, Development.

[29]  Cori Bargmann Comparative chemosensation from receptors to ecology , 2006, Nature.

[30]  L. Vosshall,et al.  Molecular architecture of smell and taste in Drosophila. , 2007, Annual review of neuroscience.

[31]  Shawn R. Olsen,et al.  Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila , 2008, Trends in Neurosciences.

[32]  Jing W. Wang,et al.  A Presynaptic Gain Control Mechanism Fine-Tunes Olfactory Behavior , 2008, Neuron.

[33]  Shawn R. Olsen,et al.  Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations , 2007, Nature Neuroscience.

[34]  Thierry Emonet,et al.  Temporal coding of odor mixtures in an olfactory receptor neuron , 2011, Proceedings of the National Academy of Sciences.

[35]  Gordon M. Shepherd,et al.  The Olfactory Bulb , 1988 .

[36]  B. Dickson Wired for Sex: The Neurobiology of Drosophila Mating Decisions , 2008, Science.

[37]  Gero Miesenböck,et al.  Odor Discrimination in Drosophila: From Neural Population Codes to Behavior , 2013, Neuron.

[38]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[39]  Johannes J. Letzkus,et al.  In developing Drosophila neurones the production of γ‐amino butyric acid is tightly regulated downstream of glutamate decarboxylase translation and can be influenced by calcium , 2003, Journal of neurochemistry.

[40]  John Tyler Bonner,et al.  Morphogenesis , 1965, The Physics of Living Matter: Space, Time and Information.

[41]  Devanand S. Manoli,et al.  Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour , 2005, Nature.

[42]  John R. Carlson,et al.  Receptors and Neurons for Fly Odors in Drosophila , 2007, Current Biology.

[43]  W. Smith The Integrative Action of the Nervous System , 1907, Nature.

[44]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.

[45]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[46]  L. Luo,et al.  Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation , 2007, Cell.

[47]  S. R. Datta,et al.  Distinct representations of olfactory information in different cortical centres , 2011, Nature.

[48]  Kei Ito,et al.  GAL4-responsive UAS-tau as a tool for studying the anatomy and development of the Drosophila central nervous system , 1997, Cell and Tissue Research.

[49]  Jing W. Wang,et al.  Select Drosophila glomeruli mediate innate olfactory attraction and aversion , 2009, Nature.

[50]  Liqun Luo,et al.  Target neuron prespecification in the olfactory map of Drosophila , 2001, Nature.

[51]  M. Heisenberg Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.

[52]  John R. Carlson,et al.  Coding of Odors by a Receptor Repertoire , 2006, Cell.

[53]  G. Buzsáki Feed-forward inhibition in the hippocampal formation , 1984, Progress in Neurobiology.

[54]  A. Vogel,et al.  Mechanisms of pulsed laser ablation of biological tissues. , 2003, Chemical reviews.

[55]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[56]  Ian R. Wickersham,et al.  Cortical representations of olfactory input by trans-synaptic tracing , 2011, Nature.

[57]  L. L. Jackson,et al.  cis-Vaccenyl acetate as an aggregation pheromone inDrosophila melanogaster , 1985, Journal of Chemical Ecology.

[58]  Jai Y. Yu,et al.  Cellular Organization of the Neural Circuit that Drives Drosophila Courtship Behavior , 2010, Current Biology.

[59]  P. Somogyi,et al.  Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus , 2007, The Journal of Neuroscience.

[60]  L. Luo,et al.  Diversity and Wiring Variability of Olfactory Local Interneurons in the Drosophila Antennal Lobe , 2010, Nature Neuroscience.

[61]  E. Yoon,et al.  Gbetagamma acts at the C terminus of SNAP-25 to mediate presynaptic inhibition. , 2005, Nature neuroscience.

[62]  G. Jefferis,et al.  An olfactory receptor for food-derived odours promotes male courtship in Drosophila , 2011, Nature.

[63]  Liqun Luo,et al.  The olfactory circuit of the fruit fly Drosophila melanogaster , 2010, Science China Life Sciences.

[64]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..

[65]  E. Yoon,et al.  Gβγ acts at the C terminus of SNAP-25 to mediate presynaptic inhibition , 2005, Nature Neuroscience.

[66]  Pavan Ramdya,et al.  Complementary Function and Integrated Wiring of the Evolutionarily Distinct Drosophila Olfactory Subsystems , 2011, The Journal of Neuroscience.

[67]  N. Tamamaki,et al.  Subtypes of GABAergic Neurons Project Axons in the Neocortex , 2009, Front. Neuroanat..

[68]  Shawn R. Olsen,et al.  Lateral presynaptic inhibition mediates gain control in an olfactory circuit , 2008, Nature.

[69]  A. Borst,et al.  Neuronal architecture of the antennal lobe in Drosophila melanogaster , 1990, Cell and Tissue Research.