Covering numbers for bounded variation functions
暂无分享,去创建一个
[1] P. Lax. Hyperbolic systems of conservation laws II , 1957 .
[2] A. Kolmogorov,et al. Entropy and "-capacity of sets in func-tional spaces , 1961 .
[3] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[4] L. Lecam. Convergence of Estimates Under Dimensionality Restrictions , 1973 .
[5] E. Bronshtein. ε-Entropy of convex sets and functions , 1976 .
[6] R. Dudley. Central Limit Theorems for Empirical Measures , 1978 .
[7] Peter D. Lax,et al. Accuracy and Resolution in the Computation of Solutions of Linear and Nonlinear Equations , 1978 .
[8] Lucien Birgé. Approximation dans les espaces métriques et théorie de l'estimation , 1983 .
[9] D. Pollard. Convergence of stochastic processes , 1984 .
[10] P. Groeneboom. Some current developments in density estimation , 1985 .
[11] L. Birge. Estimating a Density under Order Restrictions: Nonasymptotic Minimax Risk , 1987 .
[12] David Haussler,et al. Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications , 1992, Inf. Comput..
[13] P. Massart,et al. Rates of convergence for minimum contrast estimators , 1993 .
[14] David Haussler,et al. Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.
[15] Sanjeev R. Kulkarni,et al. Covering numbers for real-valued function classes , 1997, IEEE Trans. Inf. Theory.
[16] Yuhong Yang,et al. Information-theoretic determination of minimax rates of convergence , 1999 .
[17] S. Geer. Applications of empirical process theory , 2000 .
[18] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[19] Ricardo G. Durán,et al. An optimal Poincare inequality in L^1 for convex domains , 2003 .
[20] John N. Tsitsiklis,et al. Active Learning Using Arbitrary Binary Valued Queries , 1993, Machine Learning.
[21] Camillo De Lellis,et al. A quantitative compactness estimate for scalar conservation laws , 2005 .
[22] D. Dryanov,et al. Kolmogorov Entropy for Classes of Convex Functions , 2009 .
[23] F. Ancona,et al. Lower compactness estimates for scalar balance laws , 2012 .
[24] Adityanand Guntuboyina,et al. Covering Numbers for Convex Functions , 2012, IEEE Transactions on Information Theory.
[25] K. Nguyen. ON QUANTITATIVE COMPACTNESS ESTIMATES FOR HYPERBOLIC CONSERVATION LAWS , 2013 .
[26] F. Ancona,et al. Compactness estimates for Hamilton-Jacobi equations depending on space , 2015, 1504.03200.
[27] F. Ancona,et al. On compactness estimates for hyperbolic systems of conservation laws , 2014, 1403.5070.
[28] F. Ancona,et al. Quantitative Compactness Estimates for Hamilton–Jacobi Equations , 2014, Archive for Rational Mechanics and Analysis.
[29] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.