Covering numbers for bounded variation functions

[1]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[2]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[3]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[4]  L. Lecam Convergence of Estimates Under Dimensionality Restrictions , 1973 .

[5]  E. Bronshtein ε-Entropy of convex sets and functions , 1976 .

[6]  R. Dudley Central Limit Theorems for Empirical Measures , 1978 .

[7]  Peter D. Lax,et al.  Accuracy and Resolution in the Computation of Solutions of Linear and Nonlinear Equations , 1978 .

[8]  Lucien Birgé Approximation dans les espaces métriques et théorie de l'estimation , 1983 .

[9]  D. Pollard Convergence of stochastic processes , 1984 .

[10]  P. Groeneboom Some current developments in density estimation , 1985 .

[11]  L. Birge Estimating a Density under Order Restrictions: Nonasymptotic Minimax Risk , 1987 .

[12]  David Haussler,et al.  Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications , 1992, Inf. Comput..

[13]  P. Massart,et al.  Rates of convergence for minimum contrast estimators , 1993 .

[14]  David Haussler,et al.  Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.

[15]  Sanjeev R. Kulkarni,et al.  Covering numbers for real-valued function classes , 1997, IEEE Trans. Inf. Theory.

[16]  Yuhong Yang,et al.  Information-theoretic determination of minimax rates of convergence , 1999 .

[17]  S. Geer Applications of empirical process theory , 2000 .

[18]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[19]  Ricardo G. Durán,et al.  An optimal Poincare inequality in L^1 for convex domains , 2003 .

[20]  John N. Tsitsiklis,et al.  Active Learning Using Arbitrary Binary Valued Queries , 1993, Machine Learning.

[21]  Camillo De Lellis,et al.  A quantitative compactness estimate for scalar conservation laws , 2005 .

[22]  D. Dryanov,et al.  Kolmogorov Entropy for Classes of Convex Functions , 2009 .

[23]  F. Ancona,et al.  Lower compactness estimates for scalar balance laws , 2012 .

[24]  Adityanand Guntuboyina,et al.  Covering Numbers for Convex Functions , 2012, IEEE Transactions on Information Theory.

[25]  K. Nguyen ON QUANTITATIVE COMPACTNESS ESTIMATES FOR HYPERBOLIC CONSERVATION LAWS , 2013 .

[26]  F. Ancona,et al.  Compactness estimates for Hamilton-Jacobi equations depending on space , 2015, 1504.03200.

[27]  F. Ancona,et al.  On compactness estimates for hyperbolic systems of conservation laws , 2014, 1403.5070.

[28]  F. Ancona,et al.  Quantitative Compactness Estimates for Hamilton–Jacobi Equations , 2014, Archive for Rational Mechanics and Analysis.

[29]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[30]  J. Swayne CAM , 2020, IFIP State-of-the-Art Reports.