Nonparametric and high-dimensional functional graphical models

We consider the problem of constructing nonparametric undirected graphical models for high-dimensional functional data. Most existing statistical methods in this context assume either a Gaussian distribution on the vertices or linear conditional means. In this article we provide a more flexible model which relaxes the linearity assumption by replacing it by an arbitrary additive form. The use of functional principal components offers an estimation strategy that uses a group lasso penalty to estimate the relevant edges of the graph. We establish statistical guarantees for the resulting estimators, which can be used to prove consistency if the dimension and the number of functional principal components diverge to infinity with the sample size. We also investigate the empirical performance of our method through simulation studies and a real data application.

[1]  T. Hsing,et al.  Theoretical foundations of functional data analysis, with an introduction to linear operators , 2015 .

[2]  H. Müller,et al.  Functional Data Analysis for Sparse Longitudinal Data , 2005 .

[3]  Bing Li,et al.  On an additive partial correlation operator and nonparametric estimation of graphical models , 2016, Biometrika.

[4]  Larry A. Wasserman,et al.  High Dimensional Semiparametric Gaussian Copula Graphical Models. , 2012, ICML 2012.

[5]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[6]  B. Li,et al.  A Nonparametric Graphical Model for Functional Data With Application to Brain Networks Based on fMRI , 2018, Journal of the American Statistical Association.

[7]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[8]  Francis R. Bach,et al.  Consistency of the group Lasso and multiple kernel learning , 2007, J. Mach. Learn. Res..

[9]  Hyonho Chun,et al.  On an Additive Semigraphoid Model for Statistical Networks With Application to Pathway Analysis , 2014, Journal of the American Statistical Association.

[10]  S. Geer,et al.  High-dimensional additive modeling , 2008, 0806.4115.

[11]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[12]  Xiaotong Shen,et al.  Local asymptotics for regression splines and confidence regions , 1998 .

[13]  M. Reimherr,et al.  Highly Irregular Functional Generalized Linear Regression with Electronic Health Records , 2018 .

[14]  Pei Wang,et al.  Partial Correlation Estimation by Joint Sparse Regression Models , 2008, Journal of the American Statistical Association.

[15]  H. Zou,et al.  Regularized rank-based estimation of high-dimensional nonparanormal graphical models , 2012, 1302.3082.

[16]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[17]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[18]  J. Lafferty,et al.  Sparse additive models , 2007, 0711.4555.

[19]  H. Begleiter,et al.  Event related potentials during object recognition tasks , 1995, Brain Research Bulletin.

[20]  Bin Yu,et al.  High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.

[21]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[22]  Matthew Reimherr,et al.  Functional Regression Models with Highly Irregular Designs , 2018 .

[23]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[24]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[25]  Bing Li,et al.  Variable selection via additive conditional independence , 2016 .

[26]  Fang Yao,et al.  Structured functional additive regression in reproducing kernel Hilbert spaces , 2014, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[27]  Ali Shojaie,et al.  Graph Estimation with Joint Additive Models. , 2013, Biometrika.

[28]  Xinghao Qiao,et al.  Functional Graphical Models , 2018, Journal of the American Statistical Association.

[29]  David B. Dunson,et al.  Bayesian Graphical Models for Multivariate Functional Data , 2014, J. Mach. Learn. Res..

[30]  Raymond K. W. Wong,et al.  Partially Linear Functional Additive Models for Multivariate Functional Data , 2018, Journal of the American Statistical Association.

[31]  Cai Li,et al.  Fast covariance estimation for sparse functional data , 2016, Statistics and Computing.

[32]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.

[33]  Byeong U. Park,et al.  Smooth backfitting for additive modeling with small errors-in-variables, with an application to additive functional regression for multiple predictor functions , 2018 .

[34]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[35]  N. Meinshausen,et al.  LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.

[36]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[37]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[38]  Michael I. Jordan,et al.  Union support recovery in high-dimensional multivariate regression , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[39]  Lester Ingber,et al.  Statistical mechanics of neocortical interactions : Canonical momenta indicators of electroencephalography , 1995 .

[40]  J. Horowitz,et al.  VARIABLE SELECTION IN NONPARAMETRIC ADDITIVE MODELS. , 2010, Annals of statistics.

[41]  Larry A. Wasserman,et al.  The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs , 2009, J. Mach. Learn. Res..

[42]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[43]  C. J. Stone,et al.  Additive Regression and Other Nonparametric Models , 1985 .

[44]  Lexin Li,et al.  Nonparametric Functional Graphical Modeling Through Functional Additive Regression Operator , 2021, Journal of the American Statistical Association.