Asymptotic behavior of dynamical systems and cellular automata

We study discrete dynamical systems through the topological concepts of limit set, which consists of all points that can be reached arbitrarily late, and asymptotic set, which consists of all adhering values of orbits. In particular, we deal with the case when each of these are a singleton, or when the restriction of the system is periodic on them, and show that this is equivalent to some simple dynamics in the case of subshifts or cellular automata. Moreover, we deal with the stability of these properties with respect to some simulation notions.

[1]  Alejandro Maass,et al.  On the sofic limit sets of cellular automata , 1995, Ergodic Theory and Dynamical Systems.

[2]  Petr Kůrka,et al.  Topological and symbolic dynamics , 2003 .

[3]  Pierre Guillon,et al.  Nilpotency and Limit Sets of Cellular Automata , 2008, MFCS.

[4]  Vincent Bernardi Lois de conservation sur automates cellulaires , 2007 .

[5]  Lyman P. Hurd Formal Language Characterization of Cellular Automaton Limit Sets , 1987, Complex Syst..

[6]  Bruno Durand,et al.  Asymptotic Cellular Complexity , 2009, Developments in Language Theory.

[7]  B. Weiss Subshifts of finite type and sofic systems , 1973 .

[8]  Petr Kůrka,et al.  Topological Dynamics of Cellular Automata , 2001 .

[9]  Karel Culik,et al.  On the Limit Sets of Cellular Automata , 1989, SIAM J. Comput..

[10]  Bruno Durand Automates cellulaires - reversibilite et complexite , 1994 .

[11]  Enrico Formenti,et al.  Subshift attractors of cellular automata , 2007 .

[12]  J. Demongeot,et al.  On the definitions of attractors , 1985 .

[13]  Julien Cervelle,et al.  Complexité dynamique et algorithmique des automates cellulaires , 2007 .

[14]  Pierre Guillon,et al.  Stable Dynamics of Sand Automata , 2008, IFIP TCS.

[15]  P. Kurka Languages, equicontinuity and attractors in cellular automata , 1997, Ergodic Theory and Dynamical Systems.

[16]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[17]  Jarkko Kari Rice's Theorem for the Limit Sets of Cellular Automata , 1994, Theor. Comput. Sci..

[18]  Pietro Di Lena,et al.  Computational complexity of dynamical systems: The case of cellular automata , 2007, Inf. Comput..

[19]  T. K. Subrahmonian Moothathu Homogeneity of surjective cellular automata , 2005 .

[20]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[21]  Pierre Guillon,et al.  Revisiting the Rice Theorem of Cellular Automata , 2010, STACS.