Modeling and Optimization of Scalar Flows on Networks

Detailed models based on partial differential equations characterizing the dynamics on single arcs of a network (roads, production lines, etc.) are considered. These models are able to describe the dynamical behavior in a network accurately. On the other hand, for large scale networks often strongly simplified dynamics or even static descriptions of the flow have been widely used for traffic flow or supply chain management due to computational reasons. In this paper, a unified presentation highlighting connections between the above approaches are given and furthermore, a hierarchy of dynamical models is developed including models based on partial differential equations and nonlinear algebraic equations or even combinatorial models based on linear equations. Special focus is on optimal control problems and optimization techniques where combinatorial and continuous optimization approaches are discussed and compared.

[1]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[2]  Armin Fügenschuh,et al.  A Discrete Optimization Approach to Large Scale Supply Networks Based on Partial Differential Equations , 2008, SIAM J. Sci. Comput..

[3]  Michel Rascle,et al.  Resurrection of "Second Order" Models of Traffic Flow , 2000, SIAM J. Appl. Math..

[4]  Helbing Improved fluid-dynamic model for vehicular traffic. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[6]  Armin Fügenschuh,et al.  Combinatorial and Continuous Models for the Optimization of Traffic Flows on Networks , 2006, SIAM J. Optim..

[7]  Axel Klar,et al.  Instantaneous control for traffic flow , 2007 .

[8]  Carlos F. Daganzo,et al.  A theory of supply chains , 2003 .

[9]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[10]  Axel Klar,et al.  SIMPLIFIED DYNAMICS AND OPTIMIZATION OF LARGE SCALE TRAFFIC NETWORKS , 2004 .

[11]  Mauro Garavello,et al.  Traffic Flow on a Road Network , 2005, SIAM J. Math. Anal..

[12]  Dirk Helbing Modeling and simulation of multilane traffic flow , 1997 .

[13]  Ciro D'Apice,et al.  A fluid dynamic model for supply chains , 2006, Networks Heterog. Media.

[14]  M. Herty,et al.  Optimal Control for Traffic Flow Networks , 2005 .

[15]  Axel Klar,et al.  A Hierarchy of Models for Multilane Vehicular Traffic I: Modeling , 1998, SIAM J. Appl. Math..

[16]  Carlos F. Daganzo,et al.  A continuum theory of traffic dynamics for freeways with special lanes , 1997 .

[17]  Axel Klar,et al.  Mathematical Models for Vehicular Traffic , 1995 .

[18]  Stefan Ulbrich,et al.  Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws , 2003, Syst. Control. Lett..

[19]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[20]  Rolf H. Möhring,et al.  Traffic Networks and Flows over Time , 2009, Algorithmics of Large and Complex Networks.

[21]  P. Nelson A kinetic model of vehicular traffic and its associated bimodal equilibrium solutions , 1995 .

[22]  Axel Klar,et al.  Modeling, Simulation, and Optimization of Traffic Flow Networks , 2003, SIAM J. Sci. Comput..

[23]  M J Lighthill,et al.  ON KINEMATIC WAVES.. , 1955 .

[24]  Jean-Patrick Lebacque,et al.  First Order Macroscopic Traffic Flow Models for Networks in the Context of Dynamic Assignment , 2002 .

[25]  Axel Klar,et al.  Existence of Solutions for Supply Chain Models Based on Partial Differential Equations , 2007, SIAM J. Math. Anal..

[26]  Karl Kunisch,et al.  Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..

[27]  D. Armbruster,et al.  Kinetic and fluid models for supply chains supporting policy attributes , 2007 .

[28]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[29]  H. Holden,et al.  A mathematical model of traffic flow on a network of unidirectional roads , 1995 .

[30]  Axel Klar,et al.  Multivalued Fundamental Diagrams and Stop and Go Waves for Continuum Traffic Flow Equations , 2004, SIAM J. Appl. Math..

[31]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[32]  René Pinnau,et al.  AN OPTIMAL CONTROL APPROACH TO SEMICONDUCTOR DESIGN , 2002 .

[33]  Christian A. Ringhofer,et al.  Kinetic and Fluid Model Hierarchies for Supply Chains , 2003, Multiscale Model. Simul..

[34]  James M. Greenberg,et al.  Extensions and Amplifications of a Traffic Model of Aw and Rascle , 2000, SIAM J. Appl. Math..

[35]  Thomas Jagalski,et al.  Autonomous control of production networks using a pheromone approach , 2006 .

[36]  Michael Herty,et al.  Coupling Conditions for a Class of Second-Order Models for Traffic Flow , 2006, SIAM J. Math. Anal..

[37]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[38]  Axel Klar,et al.  Modelling and optimization of supply chains on complex networks , 2006 .

[39]  A. Klar,et al.  Congestion on Multilane Highways , 2002, SIAM J. Appl. Math..

[40]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[41]  Axel Klar,et al.  Optimal control for continuous supply network models , 2006, Networks Heterog. Media.

[42]  M. Herty,et al.  Network models for supply chains , 2005 .

[43]  Peter Spellucci,et al.  Numerische Verfahren der nichtlinearen Optimierung , 1993 .

[44]  Martin Skutella,et al.  Flows over time with load-dependent transit times , 2002, SODA '02.

[45]  Harold J Payne,et al.  FREFLO: A MACROSCOPIC SIMULATION MODEL OF FREEWAY TRAFFIC , 1979 .

[46]  Rinaldo M. Colombo,et al.  Hyperbolic Phase Transitions in Traffic Flow , 2003, SIAM J. Appl. Math..

[47]  Stefan Ulbrich,et al.  A Sensitivity and Adjoint Calculus for Discontinuous Solutions of Hyperbolic Conservation Laws with Source Terms , 2002, SIAM J. Control. Optim..

[48]  Axel Klar,et al.  Kinetic Derivation of Macroscopic Anticipation Models for Vehicular Traffic , 2000, SIAM J. Appl. Math..

[49]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[50]  Christian A. Ringhofer,et al.  A Model for the Dynamics of large Queuing Networks and Supply Chains , 2006, SIAM J. Appl. Math..

[51]  Axel Klar,et al.  Derivation of Continuum Traffic Flow Models from Microscopic Follow-the-Leader Models , 2002, SIAM J. Appl. Math..