Uniform Convergence and Superconvergence of Mixed Finite Element Methods on Anisotropically Refined Grids

The lowest order Raviart--Thomas rectangular element is considered for solving the singular perturbation problem $-\mbox{div}(a\nabla p)+bp=f,$ where the diagonal tensor $a=(\varepsilon^2,1)$ or $a=(\varepsilon^2,\varepsilon^2).$ Global uniform convergence rates of O(N-1) for both p and a1/2\nabla p$ in the L2-norm are obtained in both cases, where N is the number of intervals in either direction. The pointwise interior (away from the boundary layers) convergence rates of O(N-1) for p are also proved. Superconvergence (i.e., O(N-2)) at special points and O(N-2) global L2 estimate for both p and $a^{1/2}\nabla p$ are obtained by a local postprocessing. Numerical results support our theoretical analysis. Moreover, numerical experiments show that an anisotropic mesh gives more accurate results than the standard global uniform mesh.

[1]  J. J. Miller,et al.  Fitted Numerical Methods for Singular Perturbation Problems , 1996 .

[2]  I. M. Navon,et al.  Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems I: Reaction-diffusion Type , 1998, Computers & Mathematics with Applications.

[3]  Ricardo G. Durán,et al.  Superconvergence for rectangular mixed finite elements , 1990 .

[4]  M. Wheeler,et al.  Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-Centered Finite Differences , 1997 .

[5]  T. A. Manteuffel,et al.  Accurate discretization for singular perturbations: the one-dimensional case , 1995 .

[6]  Hans-Görg Roos Layer‐Adapted Grids for Singular Perturbation Problems , 1998 .

[7]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[8]  Christoph Schwab,et al.  The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..

[9]  Jun Ping Wang Superconvergence and extrapolation for mixed finite element methods on rectangular domains , 1991 .

[10]  Aihui Zhou,et al.  The full approximation accuracy for the stream function-vorticity-pressure method , 1994 .

[11]  R. Bruce Kellogg,et al.  Optimal Approximability of Solutions of Singularly Perturbed Two-Point Boundary Value Problems , 1997 .

[12]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[13]  L. Wahlbin,et al.  On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions , 1983 .

[14]  Todd Arbogast,et al.  Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry , 1998, SIAM J. Sci. Comput..

[15]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[16]  Mary F. Wheeler,et al.  SOME SUPERCONVERGENCE RESULTS FOR MIXED FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS ON RECTANGULAR DOMAINS. , 1985 .

[17]  Jinchao Xu,et al.  Some Estimates for a Weighted L 2 Projection , 1991 .

[18]  Joseph E. Flaherty,et al.  High-Order Finite Element Methods for Singularly Perturbed Elliptic and Parabolic Problems , 1995, SIAM J. Appl. Math..

[19]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[20]  A. Weiser,et al.  On convergence of block-centered finite differences for elliptic-problems , 1988 .

[21]  Ionel Michael Navon,et al.  Global Uniformly Convergent Finite Element Methods for Singularly Perturbed Elliptic Boundary Value , 1999 .

[22]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[23]  Leszek Demkowicz,et al.  An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in one space variable , 1986 .

[24]  Ionel Michael Navon,et al.  Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems: convection—diffusion type , 1998 .

[25]  J. Tinsley Oden,et al.  Optimal h-p finite element methods , 1994 .

[26]  Richard E. Ewing,et al.  Superconvergence of the velocity along the Gauss lines in mixed finite element methods , 1991 .

[27]  W. G. Szymczak,et al.  Adaptivity and Error Estimation for the Finite Element Method Applied to Convection Diffusion Problems , 1984 .

[28]  Jichun Li Quasioptimal uniformly convergent finite element methods for the elliptic boundary layer problem , 1997 .

[29]  Rüdiger Verfürth,et al.  Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation , 1998 .

[30]  G. Fairweather Finite Element Galerkin Methods for Differential Equations , 1978 .

[31]  Jichun Li,et al.  Uniformly Convergent Nite Element Methods for Singularly Perturbed Elliptic Boundary Value Problems: Convection-diiusion Type , 1997 .

[32]  R. B. Kellogg,et al.  Differentiability properties of solutions of the equation -ε 2 δ u + ru = f ( x,y ) in a square , 1990 .