Pada umumnya pengenalan tanda tangan dilakukan secara manual oleh seseorang dengan mencocokan secara langsung tanda tangan yang sah dengan tanda tangan yang dilakukan pada saat itu. Namun cara tersebut memiliki kelemahan karena membutuhkan ketelitian pada saat mencocokan. Oleh karena itu proses pencocokan tanda tangan perlu dilakukan secara otomastis dengan sistem komputer sehingga diharapkan mempermudah dalam identifikasi tanda tangan seseorang. Pada penelitian ini peneliti membandingkan metode 2DPCA dengan 2DLDA untuk mengetahui akurasi dan kecepatan proses pengenalan tanda tangan. Metode Euclidean Distance digunakan untuk mencari kemiripan data tanda tangan. Data citra tanda tangan yang digunakan terdiri dari enam jenis kondisi yaitu kertas putih polos, kertas bercorak papyrus, bercorak shingle, tanda tangan miring dan dari eKTP. Dari hasil ujicoba tingkat akurasi pengenalan citra tanda tangan menggunakan metode 2DPCA yaitu rata-rata 78.27% dan metode 2DLDA rata-rata 74.33%. Kecepatan proses pengenalan citra tanda tangan menggunakan metode 2DPCA rata-rata 0.2605504 detik sedangkan menggunakan metode 2DLDA rata-rata 0.2401697 detik. In general, the introduction of the signature is done manually by someone with matching directly authorized signature with the signature done at that time. But this way has the disadvantage because it requires precision when matching. Therefore the signature matching process needs to be done in automatically by the computer system so hopefully facilitate the identification of a person's signature. In this study, researchers compared with 2DLDA and 2DPCA method to determine the accuracy and speed of signature recognition process. Euclidean Distance method is used to find the similarity signature data. Signature image data used consisted of six types of conditions that plain white paper, papyrus patterned paper, patterned shingles, oblique and signature of eKTP. The accuracy of the test results signature image recognition using 2DPCA method which is an average 78.27% and the average 2DLDA method of 74.33%. Speed signature image recognition process using the average 2DPCA 0.2605504 seconds while using the average 2DLDA 0.2401697 seconds.
[1]
Jieping Ye,et al.
Two-Dimensional Linear Discriminant Analysis
,
2004,
NIPS.
[3]
Alejandro F. Frangi,et al.
Two-dimensional PCA: a new approach to appearance-based face representation and recognition
,
2004
.
[4]
Jian-Huang Lai,et al.
1D-LDA vs. 2D-LDA: When is vector-based linear discriminant analysis better than matrix-based?
,
2008,
Pattern Recognit..
[5]
Lindsay I. Smith,et al.
A tutorial on Principal Components Analysis
,
2002
.
[6]
David J. Kriegman,et al.
Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection
,
1996,
ECCV.
[7]
S. Li,et al.
1 D-LDA versus 2 D-LDA : When Is Vector-based Linear Discriminant Analysis Better than Matrix-based ?
,
2008
.