Coupling particle sets of contours and streamline methods for solving convection problems
暂无分享,去创建一个
[1] Alexandre Ern,et al. Finite volume box scheme for a certain class of nonlinear conservation laws in mixed form , 2009 .
[2] Alexandre Ern,et al. Combined Finite Element — Particles Discretisation for Simulation of Transport-Dispersion in Porous Media , 2009 .
[3] Norman J. Zabusky,et al. Contour Dynamics for the Euler Equations in Two Dimensions , 1997 .
[4] Georges-Henri Cottet,et al. Subgrid particle resolution for the turbulent transport of a passive scalar , 2009 .
[5] David G. Dritschel,et al. Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics , 1988 .
[6] R W Hockney,et al. Computer Simulation Using Particles , 1966 .
[7] Olivier Pironneau,et al. The vortex method with finite elements , 1981 .
[8] Joel H. Ferziger,et al. A contour dynamics algorithm for axisymmetric flow , 2008, J. Comput. Phys..
[9] Michael Bergdorf,et al. A Lagrangian Particle-Wavelet Method , 2006, Multiscale Model. Simul..
[10] S. Huberson,et al. Correction of the projection error in particle/mesh methods , 1990 .
[11] Charles-Henri Bruneau,et al. Numerical simulation of the miscible displacement of radionuclides in a heterogeneous porous medium , 2005 .
[12] Ruben Juanes,et al. Robust streamline tracing for the simulation of porous media flow on general triangular and quadrilateral grids , 2006, J. Comput. Phys..
[13] Renzo Piva,et al. A Lagrangian approach for vorticity intensification in swirling rings , 1998 .