Coupling particle sets of contours and streamline methods for solving convection problems

In this work a particle sets of contours method is coupled with a streamline technique in order to obtain accurate approximations of transport problems. A modified streamline technique is proposed and several bench tests arising in the field of porous media are then simulated to validate the new method.

[1]  Alexandre Ern,et al.  Finite volume box scheme for a certain class of nonlinear conservation laws in mixed form , 2009 .

[2]  Alexandre Ern,et al.  Combined Finite Element — Particles Discretisation for Simulation of Transport-Dispersion in Porous Media , 2009 .

[3]  Norman J. Zabusky,et al.  Contour Dynamics for the Euler Equations in Two Dimensions , 1997 .

[4]  Georges-Henri Cottet,et al.  Subgrid particle resolution for the turbulent transport of a passive scalar , 2009 .

[5]  David G. Dritschel,et al.  Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics , 1988 .

[6]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[7]  Olivier Pironneau,et al.  The vortex method with finite elements , 1981 .

[8]  Joel H. Ferziger,et al.  A contour dynamics algorithm for axisymmetric flow , 2008, J. Comput. Phys..

[9]  Michael Bergdorf,et al.  A Lagrangian Particle-Wavelet Method , 2006, Multiscale Model. Simul..

[10]  S. Huberson,et al.  Correction of the projection error in particle/mesh methods , 1990 .

[11]  Charles-Henri Bruneau,et al.  Numerical simulation of the miscible displacement of radionuclides in a heterogeneous porous medium , 2005 .

[12]  Ruben Juanes,et al.  Robust streamline tracing for the simulation of porous media flow on general triangular and quadrilateral grids , 2006, J. Comput. Phys..

[13]  Renzo Piva,et al.  A Lagrangian approach for vorticity intensification in swirling rings , 1998 .