SocialNetSense: Supporting sensemaking of social and structural features in networks with interactive visualization

Increasingly, social network datasets contain social attribute information about actors and their relationship. Analyzing such network with social attributes requires making sense of not only its structural features, but also the relationship between social features in attributes and network structures. Existing social network analysis tools are usually weak in supporting complex analytical tasks involving both structural and social features, and often overlook users' needs for sensemaking tools that help to gather, synthesize, and organize information of these features. To address these challenges, we propose a sensemaking framework of social-network visual analytics in this paper. This framework considers both bottom-up processes, which are about constructing new understandings based on collected information, and top-down processes, which concern using prior knowledge to guide information collection, in analyzing social networks from both social and structural perspectives. The framework also emphasizes the externalization of sensemaking processes through interactive visualization. Guided by the framework, we develop a system, SocialNetSense, to support the sensemaking in visual analytics of social networks with social attributes. The example of using our system to analyze a scholar collaboration network shows that our approach can help users gain insight into social networks both structurally and socially, and enhance their process awareness in visual analytics.

[1]  Jean-Daniel Fekete,et al.  MatrixExplorer: a Dual-Representation System to Explore Social Networks , 2006, IEEE Transactions on Visualization and Computer Graphics.

[2]  Ben Shneiderman,et al.  Integrating statistics and visualization: case studies of gaining clarity during exploratory data analysis , 2008, CHI.

[3]  William Ribarsky,et al.  Recovering Reasoning Processes from User Interactions , 2009, IEEE Computer Graphics and Applications.

[4]  Vladimir Batagelj,et al.  Pajek Program for Analysis and Visualization of Large Networks , 2007 .

[5]  George W. Furnas,et al.  Sources of structure in sensemaking , 2005, CHI Extended Abstracts.

[6]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[7]  Xiaoyang Mao,et al.  Visualizing histories for selective undo and redo , 1998, Proceedings. 3rd Asia Pacific Computer Human Interaction (Cat. No.98EX110).

[8]  Jarke J. van Wijk,et al.  Visual Analysis of Multivariate State Transition Graphs , 2006, IEEE Transactions on Visualization and Computer Graphics.

[9]  Ed Huai-hsin Chi,et al.  Sensemaking of evolving Web sites using visualization spreadsheets , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[10]  P. Pirolli,et al.  The Sensemaking Process and Leverage Points for Analyst Technology as Identified Through Cognitive Task Analysis , 2007 .

[11]  Pierre Dragicevic,et al.  GraphDice: A System for Exploring Multivariate Social Networks , 2010, Comput. Graph. Forum.

[12]  Tina Eliassi-Rad,et al.  Visual Analysis of Large Heterogeneous Social Networks by Semantic and Structural Abstraction , 2006 .

[13]  Ulrik Brandes,et al.  Analysis and Visualization of Social Networks , 2003, Graph Drawing Software.

[14]  Xiaolong Zhang,et al.  CiteSense: supporting sensemaking of research literature , 2008, CHI.

[15]  Gary Klein,et al.  Making Sense of Sensemaking 2: A Macrocognitive Model , 2006, IEEE Intelligent Systems.

[16]  Donald A. Norman,et al.  Things That Make Us Smart: Defending Human Attributes In The Age Of The Machine , 1993 .

[17]  Stuart K. Card,et al.  The cost structure of sensemaking , 1993, INTERCHI.

[18]  Jeffrey Heer,et al.  Graphical Histories for Visualization: Supporting Analysis, Communication, and Evaluation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[19]  Thomas Nocke,et al.  A History Mechanism for Visual Data Mining , 2004 .

[20]  Liang Gou,et al.  TreeNetViz: Revealing Patterns of Networks over Tree Structures , 2011, IEEE Transactions on Visualization and Computer Graphics.

[21]  Danah Boyd,et al.  Vizster: visualizing online social networks , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[22]  M. Sheelagh T. Carpendale,et al.  ArcTrees: Visualizing Relations in Hierarchical Data , 2005, EuroVis.

[23]  Jeffrey Heer,et al.  prefuse: a toolkit for interactive information visualization , 2005, CHI.

[24]  Martin Wattenberg,et al.  Visual exploration of multivariate graphs , 2006, CHI.

[25]  Catherine Plaisant,et al.  NetLens: Iterative Exploration of Content-Actor Network Data , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[26]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[27]  Dennis P. Groth,et al.  Provenance and Annotation for Visual Exploration Systems , 2006, IEEE Transactions on Visualization and Computer Graphics.

[28]  Jiajie Zhang,et al.  Representations in Distributed Cognitive Tasks , 1994, Cogn. Sci..

[29]  John T. Stasko,et al.  Jigsaw: Supporting Investigative Analysis through Interactive Visualization , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[30]  Herbert A. Simon,et al.  Why a Diagram is (Sometimes) Worth Ten Thousand Words , 1987, Cogn. Sci..

[31]  Cheryl Z. Qian,et al.  Capturing and supporting the analysis process , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[32]  John T. Stasko,et al.  Network-based visual analysis of tabular data , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[33]  U. Brandes,et al.  Social network analysis and visualization [Applications Corner] , 2008, IEEE Signal Processing Magazine.

[34]  Michelle X. Zhou,et al.  Characterizing users’ visual analytic activity for insight provenance , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[35]  Ben Shneiderman,et al.  Network Visualization by Semantic Substrates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[36]  Michael Gertz,et al.  A Model and Framework for Visualization Exploration , 2007, IEEE Transactions on Visualization and Computer Graphics.

[37]  David S. Ebert,et al.  MultiNode-Explorer: A Visual Analytics Framework for Generating Web-based Multimodal Graph Visualizations , 2012, EuroVA@EuroVis.

[38]  Martin Wattenberg,et al.  Voyagers and voyeurs: supporting asynchronous collaborative information visualization , 2007, CHI.

[39]  R. Breiger The Duality of Persons and Groups , 1974 .

[40]  Cláudio T. Silva,et al.  VisTrails: enabling interactive multiple-view visualizations , 2005, VIS 05. IEEE Visualization, 2005..

[41]  Padhraic Smyth,et al.  Analysis and Visualization of Network Data using JUNG , 2005 .

[42]  Alexander W. Skaburskis,et al.  The Sandbox for analysis: concepts and methods , 2006, CHI.

[43]  Jarke J. van Wijk,et al.  Supporting the analytical reasoning process in information visualization , 2008, CHI.

[44]  Jean-Daniel Fekete,et al.  Overlaying Graph Links on Treemaps , 2003 .

[45]  Michael Burch,et al.  TimeRadarTrees: Visualizing Dynamic Compound Digraphs , 2008, Comput. Graph. Forum.

[46]  Ben Shneiderman,et al.  Systematic yet flexible discovery: guiding domain experts through exploratory data analysis , 2008, IUI '08.

[47]  William Ribarsky,et al.  Recovering Reasoning Process From User Interactions , 2009 .

[48]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[49]  Hans-Jörg Schulz,et al.  Honeycomb: Visual Analysis of Large Scale Social Networks , 2009, INTERACT.