Pay-As-You-Go OWL Query Answering Using a Triple Store

We present an enhanced hybrid approach to OWL query answering that combines an RDF triple-store with an OWL reasoner in order to provide scalable pay-as-you-go performance. The enhancements presented here include an extension to deal with arbitrary OWLontologies, and optimisations that significantly improve scalability. We have implemented these techniques in a prototype system, a preliminary evaluation of which has produced very encouraging results.

[1]  Frank van Harmelen,et al.  QueryPIE: Backward Reasoning for OWL Horst over Very Large Knowledge Bases , 2011, SEMWEB.

[2]  Edith Schonberg,et al.  Scalable Semantic Retrieval through Summarization and Refinement , 2007, AAAI.

[3]  Zhe Wu,et al.  Implementing an Inference Engine for RDFS/OWL Constructs and User-Defined Rules in Oracle , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[4]  Thomas Eiter,et al.  Conjunctive query answering in the description logic SH using knots , 2012, J. Comput. Syst. Sci..

[5]  Yavor Nenov,et al.  Parallel Materialisation of Datalog Programs in Centralised, Main-Memory RDF Systems , 2014, AAAI.

[6]  Boris Motik,et al.  Reasoning in Description Logics by a Reduction to Disjunctive Datalog , 2007, Journal of Automated Reasoning.

[7]  Harald Ganzinger,et al.  Resolution Theorem Proving , 2001, Handbook of Automated Reasoning.

[8]  Boris Motik,et al.  Introducing Nominals to the Combined Query Answering Approaches for EL , 2013, Description Logics.

[9]  Jeff Z. Pan,et al.  Completeness Guaranteed Approximations for OWL-DL Query Answering , 2009, Description Logics.

[10]  Li Ma,et al.  Towards a Complete OWL Ontology Benchmark , 2006, ESWC.

[11]  Ian Horrocks,et al.  Conjunctive Query Answering for the Description Logic SHIQ , 2007, IJCAI.

[12]  Jean H. Gallier,et al.  Logic for Computer Science: Foundations of Automatic Theorem Proving , 1985 .

[13]  Yavor Nenov,et al.  Complete Query Answering over Horn Ontologies Using a Triple Store , 2013, SEMWEB.

[14]  Ralf Möller,et al.  Advances in Accessing Big Data with Expressive Ontologies , 2013, Description Logics.

[15]  Yarden Katz,et al.  Pellet: A practical OWL-DL reasoner , 2007, J. Web Semant..

[16]  Edith Schonberg,et al.  Scalable highly expressive reasoner (SHER) , 2009, J. Web Semant..

[17]  Carsten Lutz,et al.  The Combined Approach to Ontology-Based Data Access , 2011, IJCAI.

[18]  Barry Bishop,et al.  OWLIM: A family of scalable semantic repositories , 2011, Semantic Web.

[19]  Alan Robinson,et al.  The Inverse Method , 2001, Handbook of Automated Reasoning.

[20]  Jeff Heflin,et al.  LUBM: A benchmark for OWL knowledge base systems , 2005, J. Web Semant..

[21]  Ian Horrocks,et al.  Large-scale Interactive Ontology Matching: Algorithms and Implementation , 2012, ECAI.

[22]  Frank van Harmelen,et al.  WebPIE: A Web-scale Parallel Inference Engine using MapReduce , 2012, J. Web Semant..

[23]  Birte Glimm,et al.  Optimizing SPARQL Query Answering over OWL Ontologies , 2013, J. Artif. Intell. Res..

[24]  Jeff Z. Pan,et al.  TrOWL: Tractable OWL 2 Reasoning Infrastructure , 2010, ESWC.

[25]  Sebastian Rudolph,et al.  Approximate OWL-Reasoning with Screech , 2008, RR.

[26]  Ian Horrocks,et al.  Making the most of your triple store: query answering in OWL 2 using an RL reasoner , 2013, WWW.

[27]  Sebastian Wandelt,et al.  Towards Scalable Instance Retrieval over Ontologies , 2010, Int. J. Softw. Informatics.

[28]  Boris Motik,et al.  OWL 2 Web Ontology Language: structural specification and functional-style syntax , 2008 .

[29]  Boris Motik,et al.  Hypertableau Reasoning for Description Logics , 2009, J. Artif. Intell. Res..

[30]  Peter F. Patel-Schneider,et al.  OWL 2 Web Ontology Language , 2009 .

[31]  Boris Motik,et al.  Completeness Guarantees for Incomplete Ontology Reasoners: Theory and Practice , 2014, J. Artif. Intell. Res..

[32]  Bernardo Cuenca Grau,et al.  OWL 2 Web Ontology Language: Profiles , 2009 .