Sub-Integer Frequency Synthesis Using Phase-Rotating Frequency Dividers

A generalized architecture and theory for realizing multimodulus, sub-integer frequency division is developed by extending the phase-switched divider technique. The sub-integer divider consists of a pre-scaler, a phase rotator, a post-sealer, and a modulus controller. Phase rotation is proposed as an effective technique to realize fine phase resolution and thereby low sub-integer division ratios, as well as to eliminate the glitch which has plagued phase-switched dividers. Program-swallowed counters are used as the modulus controller to realize a broad-range multimodulus divider. Expressions are derived for the range and resolution of such a program-swallowed, phase-rotating divider. Furthermore, the fractional spurs from this divider topology are derived and related to the linearity of the phase rotator. It is shown that very low (-60 to -75 dBc) fractional spurs at the output of the divider can be attained with reasonably accurate phase rotators. The benefit of this technique is in the ability to realize sub-integer frequency synthesizers which have the architectural simplicity of standard integer-N PLLs, but the finer frequency resolution capabilities due to sub-integer division.

[1]  F. Gardner,et al.  Charge-Pump Phase-Lock Loops , 1980, IEEE Trans. Commun..

[2]  Michiel Steyaert,et al.  A 1.75-GHz/3-V Dual-Modulus Divide-by-128/129 Prescaler in 0.7-μM CMOS , 1996, ESSCIRC '95: Twenty-first European Solid-State Circuits Conference.

[3]  M. Horowitz,et al.  A Semi-Digital Delay Locked Loop with Unlimited Phase Shift Capability and 0 . 08-400 MHz , 1997 .

[4]  Pavan Kumar Hanumolu,et al.  Analysis of charge-pump phase-locked loops , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  T. Riley,et al.  Delta-sigma modulation in fractional-N frequency synthesis , 1993 .

[6]  H.C. Luong,et al.  A 1-V 5.2-GHz CMOS synthesizer for WLAN applications , 2004, IEEE Journal of Solid-State Circuits.

[7]  M. Steyaert,et al.  A 2-V CMOS cellular transceiver front-end , 2000, IEEE Journal of Solid-State Circuits.

[8]  Jan Craninckx,et al.  A 1.75-GHz/3-V dual-modulus divide-by-128/129 prescaler in 0.7-/spl mu/m CMOS , 1996 .

[9]  James W. Nilsson,et al.  Electric Circuits , 1983 .

[10]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[11]  Peter R. Kinget,et al.  A 5.3GHz programmable divider for HiPerLAN in 0.25µm CMOS , 1999 .

[12]  Edgar Sanchez-Sinencio,et al.  A 2.4-GHz monolithic fractional-N frequency synthesizer with robust phase-switching prescaler and loop capacitance multiplier , 2003, IEEE J. Solid State Circuits.

[13]  Floyd M. Gardner,et al.  Phaselock Techniques: Gardner/Phaselock Techniques , 2005 .

[14]  N. Krishnapura,et al.  A 5.3-GHz programmable divider for HiPerLAN in 0.25-/spl mu/m CMOS , 2000, IEEE Journal of Solid-State Circuits.

[15]  B.A. Floyd A 15 to 18-GHz Programmable Sub-Integer Frequency Synthesizer for a 60-GHz Transceiver , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[16]  M. Zargari,et al.  A single-chip dual-band tri-mode CMOS transceiver for IEEE 802.11a/b/g wireless LAN , 2004, IEEE Journal of Solid-State Circuits.

[17]  Stefanos Sidiropoulos,et al.  A semidigital dual delay-locked loop , 1997, IEEE J. Solid State Circuits.

[18]  B.D. Unter Frequency synthesizers: Theory and design , 1979, Proceedings of the IEEE.