A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains
暂无分享,去创建一个
Hong Wang | Jinhong Jia | Hong Wang | J. Jia
[1] Fawang Liu,et al. Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains , 2015 .
[2] Hong Wang,et al. Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations , 2014, J. Comput. Phys..
[3] Hong Wang,et al. A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations , 2013, J. Comput. Phys..
[4] Hong Wang,et al. A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation , 2013, J. Comput. Phys..
[5] V. Ervin,et al. Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .
[6] V. Ervin,et al. Variational formulation for the stationary fractional advection dispersion equation , 2006 .
[7] Hong Wang,et al. A Fast Finite Element Method for Space-Fractional Dispersion Equations on Bounded Domains in ℝ2 , 2015, SIAM J. Sci. Comput..
[8] K. Burrage,et al. Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain , 2012 .
[9] Hong Wang,et al. A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh , 2015, J. Comput. Phys..
[10] Xiao-Qing Jin,et al. Preconditioned iterative methods for space-time fractional advection-diffusion equations , 2015, J. Comput. Phys..
[11] Siu-Long Lei,et al. A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..
[12] E. Montroll,et al. Anomalous transit-time dispersion in amorphous solids , 1975 .
[13] Hong Wang,et al. Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations , 2016, Numerical Algorithms.
[14] H. R. Hicks,et al. Numerical methods for the solution of partial difierential equations of fractional order , 2003 .
[15] Hong Wang,et al. An O(N log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations , 2011, J. Comput. Phys..
[16] Hong Wang,et al. A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..
[17] David A. Benson,et al. Space‐fractional advection‐dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the Macrodispersion Experiment site data , 2007 .
[18] Hong Wang,et al. A Fast Finite Difference Method for Two-Dimensional Space-Fractional Diffusion Equations , 2012, SIAM J. Sci. Comput..
[19] Fawang Liu,et al. Numerical solution of the space fractional Fokker-Planck equation , 2004 .
[20] J. Klafter,et al. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .
[21] Aijie Cheng,et al. A preconditioned fast Hermite finite element method for space-fractional diffusion equations , 2017 .
[22] Fawang Liu,et al. A numerical investigation of the time distributed-order diffusion model , 2014 .
[23] Vickie E. Lynch,et al. Fractional diffusion in plasma turbulence , 2004 .
[24] Hong Wang,et al. Fast Iterative Solvers for Linear Systems Arising from Time-Dependent Space-Fractional Diffusion Equations , 2016, SIAM J. Sci. Comput..
[25] Robert M. Gray,et al. Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.
[26] D. Benson,et al. The fractional‐order governing equation of Lévy Motion , 2000 .
[27] M. Meerschaert,et al. Finite difference methods for two-dimensional fractional dispersion equation , 2006 .
[28] Michael K. Ng,et al. Preconditioning Techniques for Diagonal-times-Toeplitz Matrices in Fractional Diffusion Equations , 2014, SIAM J. Sci. Comput..
[29] I. M. Sokolov,et al. Distributed-Order Fractional Kinetics , 2004 .
[30] Rudolf Hilfer,et al. On fractional diffusion and continuous time random walks , 2003 .