Modelling of heating and evaporation of gasoline fuel droplets: a comparative analysis of approximations

Modelling of gasoline fuel droplet heating and evaporation processes is investigated using several approximations of this fuel. These are quasi-components used in the quasi-discrete model and the approximations of these quasi-components (Surrogate I (molar fractions: 83.0% n- C6H14 + 15.6% n-C10H22 + 1.4% n-C14H30) and Surrogate II (molar fractions: 83.0% n-C7H16 + 15.6% n-C11H24 + 1.4% n-C15H32)). Also, we have used Surrogate A (molar fractions: 56% n- C7H16 + 28% iso-C8H18 + 17% C7H8) and Surrogate B (molar fractions: 63% n-C7H16 + 20% iso- C8H18+ 17% C7H8), originally introduced based on the closeness of the ignition delay of surrogates to that of gasoline fuel. The predictions of droplet radii and temperatures based on three quasi-components and their approximations (Surrogates I and II) are shown to be much more accurate than the predictions using Surrogates A and B.

[1]  S. Sazhin,et al.  Mono- and multi-component droplet cooling/heating and evaporation: Comparative analysis of numerical models , 2011 .

[2]  K. Kobe The properties of gases and liquids , 1959 .

[3]  H. Mongia,et al.  Multicomponent and High-Pressure Effects on Droplet Vaporization , 2002 .

[4]  W. Hallett,et al.  The role of liquid mixing in evaporation of complex multicomponent mixtures: modelling using continuous thermodynamics , 2005 .

[5]  Morgan Heikal,et al.  Transient heating of diesel fuel droplets , 2004 .

[6]  D. Brüggemann,et al.  Numerical investigation of semi-continuous mixture droplet vaporization at low temperature , 2010 .

[7]  Peter McBurney,et al.  Nonstandard conditionally specified models for nonignorable missing data , 2016, Proceedings of the National Academy of Sciences.

[8]  F. Durst,et al.  Evaporation of acoustically levitated multi-component liquid droplets , 2007 .

[9]  J. Abraham,et al.  A Model for Multicomponent Droplet Vaporization in Sprays , 1998 .

[10]  A. E. Elwardany,et al.  A quasi-discrete model for droplet heating and evaporation: application to Diesel and gasoline fuels , 2012 .

[11]  S. Sazhin,et al.  Convective vaporization of a fuel droplet with thermal radiation absorption , 2006 .

[12]  A. E. Elwardany,et al.  A simplified model for bi-component droplet heating and evaporation , 2010 .

[13]  S. Sazhin Advanced models of fuel droplet heating and evaporation , 2006 .

[14]  S. Sazhin,et al.  Models for fuel droplet heating and evaporation: Comparative analysis , 2006 .

[15]  Richard Van Basshuysen,et al.  Gasoline Engine with Direct Injection: Processes, Systems, Development, Potential , 2009 .

[16]  William A. Sirignano,et al.  Droplet vaporization model for spray combustion calculations , 1988 .

[17]  W. Hallett,et al.  A continuous thermodynamics model for multicomponent droplet vaporization , 1995 .

[18]  M. Gavaises,et al.  INFLUENCE OF SPECIES CONCENTRATION ON THE EVAPORATION OF SUSPENDED MULTICOMPONENT DROPLETS , 2022 .

[19]  W. Sirignano,et al.  Multicomponent-liquid–fuel vaporization with complex configuration , 2008 .

[20]  Rolf D. Reitz,et al.  Modeling of Multicomponent Fuels Using Continuous Distributions with Application to Droplet Evaporation and Sprays , 1997 .

[21]  J. Ghosh,et al.  Analysis of evaporation of dense cluster of bicomponent fuel droplets in a spray using a spherical cell model , 2008 .

[22]  Rolf D. Reitz,et al.  A model for high-pressure vaporization of droplets of complex liquid mixtures using continuous thermodynamics , 2002 .

[23]  D. E. Rosner,et al.  Multicomponent fuel droplet vaporization and combustion using spectral theory for a continuous mixture , 2003 .

[24]  W. Sirignano,et al.  Droplet vaporization model for spray combustion calculations , 1989 .

[25]  T. Kristyadi Modelling of the heating and evaporation of fuel droplets , 2007 .

[26]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[27]  Rainer Koch,et al.  Droplet evaporation modeling by the distillation curve model: accounting for kerosene fuel and elevated pressures , 2003 .

[28]  Ronald K. Hanson,et al.  Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures , 2004 .

[29]  G. Castanet,et al.  Bicomponent droplets evaporation: Temperature measurements and modelling , 2008 .

[30]  A. E. Elwardany,et al.  A quasi-discrete model for heating and evaporation of complex multicomponent hydrocarbon fuel droplets , 2011 .

[31]  A. E. Elwardany,et al.  Multi-component droplet heating and evaporation: Numerical simulation versus experimental data , 2011 .

[32]  W. Hallett A simple model for the vaporization of droplets with large numbers of components , 2000 .

[33]  Carl L. Yaws,et al.  Transport properties of chemicals and hydrocarbons : viscosity, thermal conductivity, and diffusivity of C1 to C100 organics and Ac to Zr inorganics , 2014 .

[34]  Rolf D. Reitz,et al.  A vaporization model for discrete multi-component fuel sprays , 2009 .

[35]  R. A. Johns,et al.  A Detailed Modelling of the Spray Ignition Process in Diesel Engines , 2000 .

[36]  Manolis Gavaises,et al.  Numerical investigation of the evaporation of two-component droplets , 2011 .

[37]  Philippe Gilbert,et al.  An experimental and numerical analysis of the HCCI auto-ignition process of primary reference fuels, toluene reference fuels and diesel fuel in an engine, varying the engine parameters , 2008 .