Fusion of visual and infra-red face scores by weighted power series

This paper proposes a weighted power series model for face verification scores fusion. Essentially, a linear parametric power series model is adopted to directly minimize an approximated total error rate for fusion of multi-modal face verification scores. Unlike the conventional least-squares error minimization approach which involves fitting of a learning model to data density and then perform a threshold process for error counting, this work directly formulates the required target error count rate in terms of design model parameters with a closed-form solution. The solution is found to belong to a specific setting of the weighted least squares. Our experiments on fusing scores from visual and infra-red face images as well as on public data sets show promising results.

[1]  G. McLachlan,et al.  Pattern Classification: A Unified View of Statistical and Neural Approaches. , 1998 .

[2]  David G. Stork,et al.  Pattern Classification , 1973 .

[3]  Jürgen Schürmann,et al.  Pattern classification , 2008 .

[4]  Arun Ross,et al.  Handbook of Multibiometrics , 2006, The Kluwer international series on biometrics.

[5]  Kar-Ann Toh Training a Φ-Machine Classifier Using Feature Scaling-Space , 2006, 2006 4th IEEE International Conference on Industrial Informatics.

[6]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[7]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[8]  Kuldip K. Paliwal,et al.  Identity verification using speech and face information , 2004, Digit. Signal Process..

[9]  James C. Bezdek,et al.  Decision templates for multiple classifier fusion: an experimental comparison , 2001, Pattern Recognit..

[10]  Anil K. Jain,et al.  FVC2000: Fingerprint Verification Competition , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Sangyoun Lee,et al.  Robust Face Recognition by Fusion of Visual and Infrared Cues , 2006, 2006 1ST IEEE Conference on Industrial Electronics and Applications.

[12]  Douglas Preis,et al.  Computational and performance aspects of minimax equalizers , 1981, ICASSP.

[13]  Samy Bengio,et al.  Database, protocols and tools for evaluating score-level fusion algorithms in biometric authentication , 2006, Pattern Recognit..

[14]  Joseph Wilder,et al.  Comparison of visible and infra-red imagery for face recognition , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[15]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[16]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[17]  Department of Electrical,et al.  Computational and Performance Aspects of PCA-Based Face-Recognition Algorithms , 2001, Perception.

[18]  Harry Wechsler,et al.  Open set face recognition using transduction , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Josef Kittler,et al.  Fusion of multiple experts in multimodal biometric personal identity verification systems , 2002, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing.

[20]  E. Mayoraz,et al.  Fusion of face and speech data for person identity verification , 1999, IEEE Trans. Neural Networks.

[21]  Tony R. Martinez,et al.  Classification-based objective functions , 2006, Machine Learning.

[22]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[23]  Geoffrey J. Gordon Generalized^2 Linear^2 Models , 2002, NIPS 2002.

[24]  Andrea Salgian,et al.  Face recognition with visible and thermal infrared imagery , 2003, Comput. Vis. Image Underst..

[25]  Seong G. Kong,et al.  Recent advances in visual and infrared face recognition - a review , 2005, Comput. Vis. Image Underst..

[26]  Ching Y. Suen,et al.  A Method of Combining Multiple Experts for the Recognition of Unconstrained Handwritten Numerals , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Wei-Yin Loh,et al.  A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms , 2000, Machine Learning.

[28]  Kar-Ann Toh,et al.  Error-Rate Based Biometrics Fusion , 2007, ICB.

[29]  Xin Chen,et al.  IR and visible light face recognition , 2005, Comput. Vis. Image Underst..

[30]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[31]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[32]  Arun Ross,et al.  Handbook of Multibiometrics (International Series on Biometrics) , 2006 .

[33]  K.-A. Toh,et al.  Learning from Target Knowledge Approximation , 2006, 2006 1ST IEEE Conference on Industrial Electronics and Applications.

[34]  Samy Bengio,et al.  How do correlation and variance of base-experts affect fusion in biometric authentication tasks? , 2005, IEEE Transactions on Signal Processing.

[35]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[36]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[37]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[38]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..